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1 Introduction

A pressing empirical agenda seeks to estimate the economic costs of climate change. Ig-
norance of these costs has severely hampered economists’ ability to give concrete policy
recommendations. However, while climate primarily varies over space, so too do many
unobserved variables that are potentially correlated with climate.1 Seeking credible identi-
fication, an explosively growing empirical literature instead estimates the consequences of
transient weather shocks from time series variation in a location’s weather.2 Since climate
manifests itself only through weather, the hope is that transient weather shocks identify—or
at worst bound—the effects of a change in climate.

Identifying the consequences of climate change from responses to transient weather shocks
combines two challenges: (i) empirical researchers must credibly identify the consequences
of transient weather shocks, and (ii) the consequences of transient weather shocks must
be informative about the consequences of climate change. Challenge (i) is the challenge
central to empirical work throughout economics, seeking as-good-as-random assignment of
the weather treatment. Empirical researchers have addressed challenge (i) by including time
and unit fixed effects, usually taking for granted that the remaining idiosyncratic variation
in weather is exogenous.3 Challenge (ii) is less standard. The recent empirical literature
seeks to approximate the effect of one treatment (a change in climate) that is never observed
from the estimated effect of a different treatment (a transient change in weather). Whether
this mapping between treatments succeeds has been the subject of much discussion but little
formal analysis.4

I here undertake the first formal analysis that precisely delineates what and how we
can learn about the climate from reduced-form estimates of weather impacts. A change in
climate differs from a weather shock in being repeated period after period and in affecting
expectations of weather far out into the future. Linking weather to climate therefore requires
analyzing a dynamic model that captures the distinction between transient and permanent
changes in weather. I study an agent (equivalently, firm) who is exposed to stochastic weather
outcomes. The agent chooses actions (equivalently, investments) that suit the weather. The

1For many years, empirical analyses did rely on cross-sectional variation in climate to identify the economic
consequences of climate change (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005; Nordhaus, 2006).
However, cross-sectional analyses fell out of favor due to concerns about omitted variables bias. See Dell
et al. (2014) and Auffhammer (2018b) for expositions and Massetti and Mendelsohn (2018) for a review.

2For recent reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016). Blanc
and Schlenker (2017) discuss the strengths and weaknesses of relying on panel variation in weather.

3For instance, Dell et al. (2014, 741) write that “the primary advantage of the new literature is identifica-
tion”, and Blanc and Schlenker (2017, 262) describe “weather anomalies” as “ideal right-hand side variables”
because “they are random and exogenous”. We will see that the existence of forecasts and the likelihood of
serial correlation in weather in fact complicate identification.

4For instance, Dell et al. (2014, 771–772) emphasize that “short-run changes over annual or other relatively
brief periods are not necessarily analogous to the long-run changes in average weather patterns that may
occur with climate change.”
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actions chosen in different periods may be complements or substitutes: when actions are
intertemporal complements, choosing a high action in the previous period reduces the cost
of choosing a high action today, but when actions are intertemporal substitutes, choosing
a high action in the previous period increases the cost of choosing a high action today.
The first case is consistent with adjustment costs, and the second case is consistent with
actions that require scarce resources, whether physical resources or time.5 When choosing
actions, the agent knows the current weather, has access to forecasts of future weather, and
relies on knowledge of the climate to generate forecasts of weather at longer horizons. A
change in the climate alters the distribution of potential weather outcomes as well as the
agent’s expectation of future weather outcomes. I relate both climate change and fixed effects
estimators to model primitives and describe their relationship to each other.

I show that researchers can, in general, only bound the effects of climate change on
payoffs.6 Many economists have intuited that short-run adaptation responses to weather
are likely to be smaller than long-run adaptation responses to climate (e.g., Deschênes and
Greenstone, 2007). I find that two forces can favor this result. First, when actions are
durable, a forward-looking agent will undertake more actions in response to a climate shock
that also changes the next period’s weather than in response to a transient weather shock.
Estimating responses to forecasts can capture this channel. Second, when actions are in-
tertemporal complements (as in adjustment cost models), the actions an agent takes in
response to a transient weather shock are constrained by the agent’s desire to not change
actions too much from period to period, but when the same weather shock is repeated period
after period, even a myopic agent eventually achieves a larger change in activity through a
sequence of incremental adjustments. The latter effect reverses if actions are intertempo-
ral substitutes because agents will then undertake actions in response to transient weather
shocks that they would not sustain in the face of a permanent change in climate. In that
case, responses to transient weather shocks can overstate responses to permanent changes
in climate, a result consistent with conjectures in the literature (e.g., Fisher et al., 2012;
Auffhammer and Schlenker, 2014; Blanc and Schlenker, 2017; Auffhammer, 2018b). I show
that controlling for lagged actions can indicate whether actions are intertemporal comple-
ments or substitutes and thus whether researchers obtain an upper or a lower bound on the
effect of climate.

More optimistically, I describe two special cases in which weather regressions can recover

5Both types of stories exist in the literature. For instance, in studies of the agricultural impacts of climate
change, Deschênes and Greenstone (2007) conjecture that long-run adjustments to changes in climate should
be greater than short-run adjustments to weather shocks because there may be costs to adjusting crops,
whereas Fisher et al. (2012) and Blanc and Schlenker (2017) emphasize that constraints on storage and
groundwater pumping, respectively, could reverse that conclusion.

6Much empirical research has sought to estimate the consequences of climate change for profits (e.g.,
Deschênes and Greenstone, 2007) and for variables such as gross output or income that are potentially
related to aggregate payoffs (e.g., Dell et al., 2012; Burke et al., 2015; Deryugina and Hsiang, 2017; Colacito
et al., 2019).
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the effect of climate. In the first special case, actions are neither intertemporal substitutes
nor intertemporal complements: the agent’s choice of action in the current period is not
directly affected by previous choices. Empirical researchers can then approximate the effects
of climate on actions by combining the estimated effects on actions of current weather, lagged
weather, and forecasts, which capture the implications of climate change altering present,
past, and future weather, respectively.7 And because empirical researchers can recover the
effects of climate on actions, they can also recover the effect of climate on payoffs. However,
the standard empirical practice fails to control for forecasts. Fixed effects estimators can
then recover the effects of climate in only a narrower range of cases.

A second special case allows empirical researchers to recover the effects of climate from
especially simple regressions. This special case holds when the payoff function is a member
of a class that includes adjustment cost models, a simple model of resource-dependent costs,
a model in which effective adaptation is a constant-returns aggregate of current and past
actions, and a model without dynamic linkages. In this case, the marginal effect of climate
change does not depend on how actions respond to the climate. The empirical researcher
can then recover the effects of climate from a model that ignores forecasts. Further, because
forecasts can affect payoffs only through their effects on agents’ actions, the researcher can
test whether this special case applies by testing whether forecasts affect payoffs.

Figure 1 depicts the intuition for why empirical researchers in general need to recover the
effects of climate on actions. Consider estimating the effect of temperature on agricultural
profits, as in Deschênes and Greenstone (2007). Each solid curve in the left panel plots
profits as a function of current inputs (such as labor and irrigation), conditional on growing
season temperature. As we move to the right, the solid curves condition on increasingly
warm growing seasons. In static environments, agents maximize profits by choosing inputs
at the peaks of these curves, such as points a and b. The dotted line gives the effect on time
t profits of time t temperature. Small changes in temperature do not have first-order effects
on profits through input choices. This is the content of the envelope theorem.

Thus far, one may be tempted to conclude that we can recover the effect of climate on
payoffs by estimating the consequences of transient weather shocks. However, this envelope
theorem intuition misses the dynamics that distinguish climate from weather. A change
in climate affects past and future weather, not just current weather. First consider the
consequences of affecting past weather. Imagine that changing inputs imposes adjustment
costs, so that time t profits also depend on time t− 1 inputs.8 If last year was hot, then last
year’s input choices reflect that outcome and it becomes less costly to choose high inputs

7Much empirical research has sought to estimate the consequences of climate change for decision vari-
ables or functions of decision variables, including productivity (Heal and Park, 2013; Zhang et al., 2018),
crime (Ranson, 2014), time allocation (Graff Zivin and Neidell, 2014), and energy use (Auffhammer and
Aroonruengsawat, 2011; Deschênes and Greenstone, 2011; Auffhammer, 2018a).

8The main text will also explore the implications of resource scarcity stories, which reverse the relationship
between time t and time t− 1 inputs from that described here.
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this year. The dashed curve in the left panel of Figure 1 plots profits in a current hot year
conditional on having already adjusted last year’s input choices in response to last year’s
being hot. Profits increase at input levels around point b because adjustment costs are
reduced. Profits also increase because the optimal input level increases to point c, reflecting
that current choices are less constrained by previous choices. Last year’s input decisions can
therefore have first-order effects on time t profits by changing the adjustment costs faced at
time t. Because a transient weather shock will not capture how climate affects the trajectory
of previous input decisions, we may expect a transient change in weather to fail to identify
the effects of climate.

Now consider the implications of climate affecting future weather. A change in climate
leads agents to expect the subsequent year t + 1 to once again be hot and thus to expect
to choose a high input level in year t + 1. Applying more inputs at time t now carries
the dynamic benefit of reducing time t + 1 adjustment costs. As a result, the dynamically
optimal input choice is point d, where the marginal effect on this year’s profit is negative but
the marginal effect on the present value of expected profits is zero (see equation (1) below).9

Envelope theorem arguments assume that profit-maximizing inputs always occur where the
marginal effect on time t profit is zero. These arguments fail when agents choose inputs
with an eye to their implications for future years, whether because current inputs affect
future years’ adjustment costs, because current inputs affect the availability of resources in
future years, or because current inputs are forward-looking adaptation decisions that directly
protect against future weather.

To estimate the effect of climate on payoffs, empirical researchers must account for how
actions change with the climate. But how can they estimate that change from point a to
point d? The right panel of Figure 1 again plots profits as a function of current inputs,
but it now holds current weather fixed between curves and instead varies only the previous
year’s input choices. The curve labeled “ss” depicts profits when the typical temperature
has occurred many years in a row, so that previous inputs reached a steady state. The other
two curves depict this year’s profits under the typical temperature outcome but with higher
(“H”) and lower (“L”) choices of inputs in the previous year. The adjustment costs imposed
by these past choices constrain this year’s choice of inputs and thereby reduce profits.

The dotted curve gives the effect on myopically optimized profits of changing last year’s
input choices. For any given previous input choice, the myopically profit-maximizing input
choice finds the peak of the curve. The dotted curve has a peak at the myopically optimal
labor input implied by curve “ss” because adjustment costs vanish in that case. Around
this point (labeled 1), a change in past weather does not have first-order effects through
input choices. So the left panel’s point c converges to point b. Now imagine that the agent
expects the typical temperature to also occur next year. Because this year’s input choices

9As will be discussed, the dynamically optimal input level could be to the left or the right of point c, but
in either case, expecting the subsequent year to be hot would shift the dynamically optimal input level to
the right in order to reduce the adjustment costs faced in that subsequent year.
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Figure 1: Left: Profits against inputs, conditional on temperature. Temperature is higher
for curves farther to the right. The dotted curve through points a and b gives the effect on
profits of increasing temperature in the absence of long-run adaptation. Point c accounts
for adaptation to previous hot years, and point d accounts for expecting next year to again
be hot. Right: Profits against inputs, conditional on past input choices. The curve labeled
“ss” sets previous inputs to the steady state that would result if the current temperature
had been repeated indefinitely.

do not have first-order effects on next year’s profits around point 1, the myopically optimal
input choice is also dynamically optimal. So the left panel’s point d converges to point c.
Combining these results, the left panel’s point d converges to point b around point 1, so that
the treatment effect of a transient weather shock indeed recovers the effect of permanently
changing the weather. The key assumptions are, first, that agents tend to be near their
steady-state actions and, second, that small changes in past actions do not have first-order
effects on payoffs around a steady state (i.e., that point 1 occurs at a flat point of the
dotted line in the right panel). The formal analysis identifies the class of profit functions for
which this second assumption holds. Consistent with the intuition given here, it shows that
adjustment cost models are indeed members of that class.

Despite the importance of empirically estimating the costs of climate change and the
sharpness of informal debates around the relevance of the recent empirical literature to cli-
mate change, there has been remarkably little formal analysis of the economic link between
weather and climate. The primary exception is an argument given in Hsiang (2016) and again
in Deryugina and Hsiang (2017). The argument stipulates that a change in climate differs
from a change in weather only by affecting beliefs about future weather. This difference in
beliefs can matter for payoffs only if it affects an agent’s chosen actions. However, the enve-
lope theorem tells us that an optimizing agent’s actions cannot have first-order consequences
for payoffs. Therefore the effects of weather on payoffs exactly—and generically—identify
the effects of climate on payoffs.

By formalizing the distinction between climate and weather in a dynamic environment,
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the present analysis highlights two weak points in this argument. First, it is true that a
change in climate alters beliefs about future weather, but it is also true that a change in
climate alters past weather and thus past actions. Past actions are predetermined variables
from the perspective of an optimizing agent and thus do not drop out through the envelope
theorem. Illustrating that beliefs are not the only difference between weather and climate,
we will see that even myopic agents can respond differently to weather and climate. Second,
in a dynamic model, the envelope theorem applies to the intertemporal value function, not
to the per-period payoff function investigated by much empirical work. In a dynamic setting,
optimized current actions can have first-order effects on current payoffs when those are offset
by first-order effects on expected future payoffs. The present analysis describes the special
class of payoff functions for which optimized current actions do not have first-order effects
on future payoffs around a steady state and thus, from the first-order condition, also do not
have first-order effects on current payoffs around a steady state. In this case, the effects of
current actions around a steady state comport with the envelope theorem’s implications in
a static environment.10

A few other lines of research are also related. First, calibrated numerical simulations
have shown that dynamic responses are critical to the effects of climate on timber markets
(Sohngen and Mendelsohn, 1998; Guo and Costello, 2013) and to the cost of increased cyclone
risk (Bakkensen and Barrage, 2018). I develop a general analytic setting that precisely
disentangles several types of dynamic responses and relates them to widely used fixed effects
estimators. Second, some empirical papers have demonstrated that actions do respond to
forecasts of future weather (e.g., Neidell, 2009; Rosenzweig and Udry, 2013, 2014; Wood
et al., 2014; Miller, 2015).11 In particular, Shrader (2017) and Taraz (2017) use variation in
forecasts and past weather outcomes, respectively, to estimate ex-ante adaptation to weather
events. I formally demonstrate that it is critical to estimate responses both to forecasts and
to lagged weather when seeking to learn about the consequences of climate change. Finally,
Kelly et al. (2005) and Kala (2017) study learning about the climate from observed weather.
I here abstract from learning in order to focus on mechanisms more relevant to the recent
empirical literature.12

10In an earlier expositional analysis, I showed how envelope theorem arguments can fail in a three-period
model (Lemoine, 2017). The present work precisely analyzes the consequences of climate change in an
infinite-horizon model and constructively shows which types of empirical estimates can be informative about
the climate.

11Severen et al. (2018) show that land markets capitalize expectations of future climate change and correct
cross-sectional analyses in the tradition of Mendelsohn et al. (1994) for this effect. In contrast, I here study
responses to widely available, shorter-run forecasts in a time series context and show how to use them to
improve panel analyses in the tradition of Deschênes and Greenstone (2007).

12Kelly et al. (2005) frame the cost of learning as an adjustment cost. Quiggin and Horowitz (1999, 2003)
discuss broader costs of adjusting to a change in climate. These papers’ adjustment costs are conceptually
distinct from the adjustment costs studied here. I follow the empirical literature in studying the long-run
cost of changing the climate without modeling the transition from one climate to another (Carleton et al.,
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The challenge of attempting to estimate long-run effects from short-run variation is a
common one in empirical economics. I give three examples. In environmental economics,
researchers would like to estimate the long-run health consequences of pollution but typically
only have exogenous variation in short-run exposure to pollution. Some recent work has
found exogenous, policy-induced variation in long-run pollution exposure (e.g., Chen et al.,
2013; Anderson, 2015; Barreca et al., 2017). This type of variation is unlikely to be available
to researchers interested in the consequences of changing the climate.

In labor economics, a large reduced-form literature investigates the consequences for
employment of increasing the minimum wage. Sorkin (2015) argues that this literature has
been estimating only short-run effects: firms will not reduce employment by much when
they anticipate that inflation will eat away observed increases in the minimum wage and
face adjustment costs in changing the number of jobs they offer. He shows that reduced-
form regressions can recover long-run consequences only in special cases, which include the
requirement that employment initially be near a steady state. A similar requirement will be
an element of the special cases in which weather variation can identify the effects of climate.13

Finally, macroeconomists study the tradeoff between output and inflation. Economists
had hoped to learn about long-run tradeoffs by estimating distributed lag models, but Lucas
(1972) argued that, when agents have rational expectations, the lagged response to a tran-
sient inflation shock is not informative about the long-run effects of permanently changing
inflation policy. In the present setting, a change in climate is analogous to shifting the “policy
rule” governing weather. I will show that differences arise both from rational expectations
and from having reacted to alterations in past weather.

The next section describes the setting. Section 3 analyzes the effect of climate on pay-
offs, including how to estimate these effects in the special case in which effects on actions
vanish. Section 4 considers estimating the effect of climate on actions and Section 5 builds
on these results to estimate the effect of climate on payoffs in general cases. Section 6 ex-
amines the effects of aggregating over longer timesteps, including in recent long difference
estimators. The final section summarizes caveats and potential extensions. The appendix
contains proofs.

2018, is a notable exception). The present use of “adjustment costs” follows much other economics literature
in referring to the cost of changing decisions from their previous levels, where decisions here respond to
variations in weather. The present paper studies how these adjustment costs hinder estimation of the
consequences of climate change from weather, not how they affect the cost of transitioning from one climate
to another. I return to this point in the conclusion.

13Hamermesh (1995) argues that the pre-period before a minimum wage increase is not actually a pre-
period because firms have foreknowledge of the change and may use that knowledge to begin adjusting, and
he argues that the post-period may not capture long-run effects unless employers can adjust quickly. In the
present setting, similar considerations will complicate identification of climate effects from weather variation
and will require researchers to estimate responses to forecasts.
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2 Setting

An agent is repeatedly exposed to stochastic weather outcomes and takes actions based on
realized weather and information about future weather. The realized weather in period t is
wt and the agent’s chosen action is At.

14 This action may be interpreted as a level of activity
(e.g., time spent outdoors, energy used for heating or cooling, irrigation applied to a field)
or as a stock of capital (e.g., outdoor gear, size or efficiency of furnace, number or efficiency
of irrigation lines). The agent’s time t payoffs are π(At, At−1, wt, wt−1), which is twice-
differentiable. Letting subscripts indicate partial derivatives with respect to the indicated
argument, I assume declining marginal benefits of current and past actions (π11 < 0, π22 ≤ 0).

I interpret actions as adaptations that become more valuable with high weather out-
comes (π13, π23 ≥ 0). Following terminology from the literature on climate adaptation (e.g.,
Fankhauser et al., 1999; Mendelsohn, 2000), a case with π13 > 0 reflects adaptation that can
occur after weather is realized (“reactive” or “ex-post” adaptation) and a case with π23 > 0
reflects adaptation that can occur before weather is realized (“anticipatory” or “ex-ante”
adaptation).15 I allow for adaptation to play both roles at once. The possibility that π4 6= 0
reflects potential delayed impacts from the previous period’s weather, with π14 and π24 cap-
turing the potential for ex-post adaptation to alter these delayed impacts. Consistent with
the normalizations above, I assume π14, π24 ≥ 0

I allow π12 to be positive or negative, with its magnitude constrained as described below.
When π12 < 0, actions are “intertemporal substitutes”, so that choosing a higher level of
past actions increases the cost of choosing higher actions today. I describe this case as
a resource scarcity story.16 For instance, pumping groundwater today raises the cost of
pumping groundwater tomorrow, or calling in sick today increases the cost of calling in
sick tomorrow. When π12 > 0, actions are “intertemporal complements”, so that choosing
a higher level of past actions increases the benefit from choosing higher actions today. I
describe this case as an adjustment cost story.17,18 For instance, small changes to cropping
practices or work schedules may be easier to implement than large changes. The magnitude
of π12 affects the agent’s preferred timing of adaptation. As |π12| becomes large, the agent

14For expositional purposes, I treat actions and the weather index as being one-dimensional. Generalizing
to vector-valued actions and weather is straightforward but increases notation without further insight.

15If we interpret actions as the choice of capital stock, then a model with only ex-ante adaptation corre-
sponds to a time-to-build model with a one-period lag and full depreciation.

16Relating to the literature on resource extraction, the case with π12 < 0 can be seen as reflecting stock-
dependent extraction costs (Heal, 1976).

17The benchmark quadratic adjustment cost model has π12 = k for some k > 0 (see Hamermesh and Pfann,
1996). If we interpret actions as the choice of capital stock, then quadratic adjustment costs correspond to
models with quadratic investment costs. Some evidence suggests that the costs of adjusting capital and
labor are small in practice (e.g., Hall, 2004), though others report convex adjustment costs for labor (e.g.,
Blatter et al., 2012) and capital (e.g., Cooper and Haltiwanger, 2006).

18This case also corresponds to shifts in preferences due to habit formation, as studied by Ge and Ho
(2019) in the context of heating and cooling decisions.
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prefers to begin adapting before the weather event arrives, but when |π12| is small, the agent
may wait to undertake most adaptation only once the weather event has arrived.19

The agent observes time t weather before selecting her time t action. The agent also
understands the climate C, which controls the distribution of weather. We can interpret
weather as temperature and climate as a location’s long-run average temperature. At all
times before t− 1, the agent’s only information about time t weather consists in knowledge
of the climate. However, at time t − 1 the agent receives a forecast ft−1 of time t weather:
ft−1 = C + ζνt−1, where the innovation νt−1 is a mean-zero, serially uncorrelated random
variable with variance τ 2 > 0. The forecast is an unbiased predictor of time t weather:
wt = ft−1 + ζεt, where εt is a mean-zero, serially uncorrelated random variable with variance
σ2 > 0.20 The parameter ζ ≥ 0 is a perturbation parameter that will be useful for analysis
(see Judd, 1996). The covariance between εt and νt is ρ, which implies that the covariance
between wt and wt−1 is ζ2ρ.

The agent maximizes the present value of payoffs over an infinite horizon:

max
{At}∞t=0

∞∑
t=0

βtE0 [π(At, At−1, wt, wt−1)] ,

where β ∈ [0, 1) is the per-period discount factor, A−1 is given, and E0 denotes expectations
at the time 0 information set. The solution satisfies the following Bellman equation:

V (At−1, wt, ft, wt−1; ζ) = max
At

{
π(At, At−1, wt, wt−1) + βEt [V (At, wt+1, ft+1, wt; ζ)]

}
s.t. wt+1 =ft + ζεt+1

ft+1 =C + ζνt+1.

The setting is sufficiently general to describe many applications of interest. For instance,
much empirical literature has studied the effects of weather on energy use. The agent could
then be choosing indoor temperature in each period, where payoffs depend on current actions
through energy use and depend on weather through thermal comfort. Much empirical work

19The magnitude of π12 is related to the distinction between ex-post and ex-ante adaptation insofar as it
affects the agent’s preferred timing of adaptation actions. However, π12 incentivizes early adaptation only to
reduce the costs of later adaptation, not because early adaptation provides protection from weather events.
I reserve the terms ex-ante and ex-post adaptation to refer to the effects of actions on the marginal benefit
of weather, captured by π13, π23, π14, and π24.

20Consistent with much previous literature, climate here controls average weather. One might wonder
about the dependence of higher moments of the weather distribution on climate. In fact, the effects of
climate change on the variance of the weather are poorly understood and likely to be spatially heterogeneous
(e.g., Huntingford et al., 2013; Lemoine and Kapnick, 2016). Further, for economic analysis, we need to know
not just how climate change affects the variance of realized weather but how it affects the forecastability of
weather: the variance of the weather more than one period ahead is ζ2(σ2 + τ2), so we need to apportion
any change in variance between σ2 and τ2. I leave such an extension to future work.
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has also studied the effect of weather on labor productivity. The decision variable could be
effort, the dependence of payoffs on weather can reflect current thermal stress as well as the
effects of the previous day’s weather via sleep and physiological functioning, the resource
scarcity is one of tasks needing to be done, and forecasts allow the agent to plan tasks and
vacation time around weather outcomes.

Whereas forecasts have clear interpretations in shorter-run decisions about energy use and
time allocation, one may wonder about the existence of forecasts over longer timesteps, such
as when studying the effect of growing season degree days on agricultural profits.21 Much
work has shown that seasonal forecasts can be valuable and useful to developing country
farmers with rainfed agriculture (e.g., Hansen et al., 2011). Indian farmers do adjust planting
stage decisions to seasonal monsoon forecasts (Rosenzweig and Udry, 2013; Miller, 2015), and
migration decisions also respond to these forecasts (Rosenzweig and Udry, 2014).22 Further,
Indian farmers develop more accurate beliefs about the start of the monsoon when such
accuracy would be especially valuable (Giné et al., 2015). In a developed country context,
Takle et al. (2013) describe the various seasonal forecasts of interest to U.S. corn farmers. In
these contexts, the decision variables can involve labor, fertilizer, irrigation, or crop varieties,
and weather costs can reflect the losses in crop yields.23

I will often impose one of the following two assumptions:

Assumption 1. ζ2 is small.

Assumption 2. π is quadratic.

Either assumption will limit the consequences of stochasticity for optimal policy, whether by
limiting the variance of weather outcomes (Assumption 1) or by making the policy function
independent of that variance (Assumption 2).24

I will be interested in estimating the effects of changing C from responses to time series
variation in wt and ft. It is important to be clear about the climate experiment. I study the
effects of a change in climate on an agent who has had time to adapt to the new climate. This
climate change treatment is consistent with the exercise common in the empirical literature,
which calculates the effect of changing today’s distribution of weather to a distribution
projected to hold by the end of the century. I will not study how the transition from

21Based on day-to-day experience, many believe that forecasts are useless past a week or two, but in
fact forecast skill starts increasing at longer horizons as ocean-atmosphere interactions dominate uncertainty
about initial conditions. See National Research Council (1999), National Academies of Sciences (2016),
and Klemm and McPherson (2017), among others, for reviews of seasonal forecasting, including its use in
agriculture.

22In a different context, Shrader (2017) shows that U.S. fishers respond to seasonal El Niño forecasts.
23Scott (2013) estimates how the returns to planting a field with crops depend on the previous state of

the field, which maps into the present setting’s π12.
24When applying Assumption 2, the chosen policy is still affected by the variance of weather because that

chosen policy depends on the realized weather.
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one climate to another interacts with agents’ decisions, whether with the decisions already
observable in empirical data or with the decisions that will be influenced by future climate
change. I will also not study how expectations of a future change in climate affect agents
today. These are all important questions but beyond the scope of the present analysis and
largely outside of the reduced-form empirical literature that this analysis seeks to inform.25

The conclusion returns to some of these points.

3 The Effect of Climate on Payoffs

Empirical researchers want to credibly identify the effects of climate change on the payoffs
of households and firms. The ideal dataset would contain panel variation in a forward-
looking measure of value, such as land values or other asset prices, that could be combined
with panel variation in expectations of future climate to estimate the expected impacts of
climate change. However, researchers instead have panel variation in flow payoffs and panel
variation in weather. For instance, much empirical research studies how variation in weather
affects agricultural profits (e.g., Deschênes and Greenstone, 2007) and variables such as gross
output or income that are potentially related to aggregate payoffs (e.g., Dell et al., 2012;
Burke et al., 2015; Deryugina and Hsiang, 2017; Colacito et al., 2019). I now consider how
to estimate the effect of climate on long-run payoffs from time series variation in weather
and flow payoffs.

Consider a deterministic system, with ζ = 0. The first-order condition is:

0 = π1(At, At−1, C, C) + βV1(At, C, C, C; 0).

The envelope theorem yields:

V1(At−1, C, C, C; 0) = π2(At, At−1, C, C).

Advancing this forward by one timestep and substituting into the first-order condition, we
have the Euler equation:

0 = π1(At, At−1, C, C) + βπ2(At+1, At, C, C). (1)

If π2 = 0, then we have a static optimization problem and the agent maximizes payoffs by
setting the marginal time t benefit of time t actions to zero. In Figure 1, points a, b, and c
would in fact be optimal. However, matters are different if π2 is nonzero. A case with π2 > 0
is a case of deferred benefits: actions taken in period t provide benefits in the future, as with
capital investments. In the presence of these benefits, the optimal time t action must have
a negative marginal flow benefit in time t, as with point d in Figure 1. A case with π2 < 0

25As an exception, Carleton et al. (2018) study the implications of climate change as it may unfold over
the coming century.
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is a case of deferred costs: actions taken in period t impose costs in the future, as with the
use of scarce resources or as when taking out a loan. In the presence of deferred costs, the
optimal time t action must have a positive marginal flow benefit in time t.26

A steady state Ā of the deterministic system is implicitly defined by

0 = π1(Ā, Ā, C, C) + βπ2(Ā, Ā, C, C). (2)

Define π̄ , π(Ā, Ā, C, C). The following lemma describes the uniqueness and stability of the
steady state.

Lemma 1. Ā is locally saddle-path stable if and only if (1 +β)|π̄12| < −π̄11−βπ̄22, in which
case Ā is unique.

Proof. See appendix.

I henceforth assume that (1 + β)|π̄12| < −π̄11 − βπ̄22, so that the deterministic steady state
is unique and saddle-path stable.

Now consider optimal policy in the stochastic system. The first-order condition is:

0 = π1(At, At−1, wt, wt−1) + βEt[V1(At, wt+1, ft+1, wt; ζ)].

The envelope theorem yields:

V1(At−1, wt, ft, wt−1; ζ) = π2(At, At−1, wt, wt−1).

Advancing this forward by one timestep and substituting into the first-order condition, we
have the stochastic Euler equation:

0 = π1(At, At−1, wt, wt−1) + βEt[π2(At+1, At, wt+1, wt)].

I analyze the stochastic system by approximating around the steady state and ζ = 0 (Judd,
1996).

Using either Assumption 1 or Assumption 2, we have:

E0[π(At, At−1, wt, wt−1)] =π̄ + π̄1(E0[At]− Ā) + π̄2(E0[At−1]− Ā)

+
1

2
π̄11E0[(At − Ā)2] +

1

2
π̄22E0[(At−1 − Ā)2] +

1

2
(π̄33 + π̄44)ζ2(σ2 + τ 2)

+ π̄12E0[(At − Ā)(At−1 − Ā)] + π̄13Cov0[At, wt] + π̄23Cov0[At−1, wt]

+ π̄14Cov0[At, wt−1] + π̄24Cov0[At−1, wt−1] + π̄34ζ
2ρ, (3)

for t > 1. The following lemma describes the evolution of E0[At].

26In Figure 1, the dynamically optimal actions would now be to the left of points a, b, and c. The effect
of expecting the subsequent year to be hot would still shift that action to the right, so point d would still
be to the right of the corrected point c.
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Lemma 2. Let either Assumption 1 or 2 hold, and let E0[(A1 − Ā)2] be small. Then, as
t→∞, E0[At]→ Ā.

Proof. See appendix.

Using this result, differentiating equation (3) with respect to C, and applying either As-
sumption 1 or Assumption 2 again, we find that, as t becomes large,

dE0[π(At, At−1, wt, wt−1)]

dC
→π̄3 + π̄4 + [π̄1 + π̄2]

dĀ

dC
. (4)

The marginal effect of climate on long-run payoffs is composed of the direct effect of a
larger weather index, in both the present (π̄3) and the past (π̄4), and the effects of changing
long-run actions, including both present actions (π̄1) and past actions (π̄2). From the Euler
equation (1), we have π̄1 = −βπ̄2, so as t becomes large,

dE0[π(At, At−1, wt, wt−1)]

dC
→π̄3 + π̄4 + (1− β)π̄2

dĀ

dC
. (5)

Whether economic responses increase or decrease payoffs depends on the sign of π̄2. As
described in Section 4, a case with π̄2 > 0 is a case in which higher actions impose costs
today but provide benefits tomorrow, as when undertaking adaptation investments that take
time to build. A case with π̄2 < 0 is a case in which higher actions provide benefits today
but impose costs tomorrow, as when borrowing money or selling from storage. Undertaking
more actions because of climate change increases payoffs if and only if actions are of the
former type.

I now analyze the implications of a special class of payoff functions for our ability to
estimate the effect of climate on payoffs from within-unit weather variation. For these payoff
functions, the marginal benefit of past actions around a steady state is proportional to the
marginal benefit of current actions around a steady state:

Assumption 3. π2(At, At−1, wt, wt−1) = Kπ1(At, At−1, wt, wt−1) if At−1 = At, for K 6= −β.

Consider a few members of this class. First, adjustment cost models yield K = 0: if π =
g(At, (At−At−1)z, wt, wt−1) for z > 1, then π2 = z(At−At−1)z−1g2(At, (At−At−1)z, wt, wt−1)
and thus is equal to 0 when At = At−1. Second, a model in which the returns to resource
extraction decline in previous extraction can yield K = −1: if π = g(At/At−1, wt, wt−1),
then π1 = g1(At/At−1, wt, wt−1)/At−1 and π2 = −Atg1(At/At−1, wt, wt−1)/(A2

t−1). Third, a
model in which ex post adaptation and ex ante adaptation actions form a constant elasticity
of substitution (CES) aggregate with distribution parameter κ yields K = (1 − κ)/κ: π =
g(h(At, At−1), wt, wt−1) where h(At, At−1) = (κAσt + (1 − κ)Aσt−1)1/σ for σ < 1, 6= 0 and
h(At, At−1)→ AκtA

1−κ
t−1 as σ → 0. Finally, a model without dynamic linkages has π2(·, ·, ·, ·) =

0 and thus K = 0.
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Empirical researchers hope to recover (5) from time series variation in weather. Label
agents by j and imagine that they are in the same climate C with the same payoff function π
and the same stochastic process driving forecasts and weather, though each agent may draw
a different sequence of weather and forecasts. Most empirical researchers will not observe
the full set of actions available to agents or firms. As a result, empirical researchers may
estimate the following regression:

πjt =αj + ψt +Xjtθ + ηjt, (6)

where αj is a fixed effect for agent j, ψt is a time fixed effect, and ηjt is an error term.27 The
vector of covariates Xjt is[

wjt fjt wj(t−1) fj(t−1) ... wj(t−K) fj(t−K)

]
.

We are interested in the vector of coefficients θ. I denote each element with a subscript
corresponding to the covariate it multiplies, and I use a hat to denote the probability limit
of each element.

Proposition 1. Let Assumption 3 hold. Further, let either Assumption 1 hold or let As-
sumption 2 hold with the ε and ν normally distributed. And let (Aj(t−1)− Ā)2 and (Ajt− Ā)2

be small for all observations and let each agent’s average actions be Ā. Then, for s large
and K > 0,

dE0[πs]/ dC = π̄3 + π̄4 = θ̂wt + θ̂wt−1

and
θ̂ft = 0.

Proof. See appendix.

From equation (4), estimating the effects of climate on payoffs requires estimating four
terms: π̄3, π̄4, π̄1[ dĀ/ dC], and π̄2[ dĀ/ dC]. However, the proposition shows that when
Assumption 3 holds, the direct effects on weather suffice to describe the effect of climate on
payoffs. Assumption 3 and the Euler equation (1) imply that π̄2 = π̄1 = 0: an optimizing
agent sets the marginal benefit of actions to zero around a steady state, as with point 1
in Figure 1. In this case, the consequences of marginal climate change are independent of

27I do not explicitly model the unobservable characteristics that motivate the fixed effects specification
because they are not central to the question of interest. These unobservables relate to challenge (i) described
in the introduction. See Dell et al. (2014) and Auffhammer (2018b), among others, for standard expositions
of identification in the climate-economy literature. I assume that the only sources of omitted variables
bias are the failure to control for variables, such as forecasts or lagged actions, that are defined within the
theoretical model.
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changes in actions.28 Therefore, summing θ̂wt and θ̂wt−1 fully captures the effects of climate
on payoffs. Further, we can test whether Assumption 3 holds by examining the magnitude of
the coefficient on forecasts: because forecasts matter for current payoffs only through their
effects on actions, they cannot affect these payoffs if Assumption 3 indeed holds and agents
are near a steady state.29

However, Assumption 3 will not hold in general. We cannot then ignore the effects of
climate on agents’ actions when estimating effects on climate. I next study how to recover
the effect of climate on actions before returning to estimation of the effect of climate on
payoffs.

4 Estimating the Effect of Climate on Actions

We have seen that the effects of climate on payoffs are closely related to its effects on actions.
Further, much empirical research has sought to estimate the consequences of climate change
for decision variables or functions of decision variables, including productivity (Heal and
Park, 2013; Zhang et al., 2018), time allocation (Graff Zivin and Neidell, 2014), and energy
use (Auffhammer and Aroonruengsawat, 2011; Deschênes and Greenstone, 2011; Auffham-
mer, 2018a). We therefore now consider how to estimate the effect of climate on actions
from time series variation in weather.

The proof of Lemma 2 shows that if either Assumption 1 or 2 holds and (At−1 − Ā)2 is
small, then

At =Ā+

effects of past weather︷ ︸︸ ︷
π̄14

χ
(wt−1 − C) +

π̄12

χ
(At−1 − Ā) +

effects of current weather︷ ︸︸ ︷
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ
(wt − C)

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
(ft − C)︸ ︷︷ ︸

effects of future weather

, (7)

28As described earlier, one of the special cases of Assumption 3 is a model with no dynamic linkages
(π2(·, ·, ·, ·) = 0), in which case the agent solves a series of independent, static decision problems. We have
therefore recovered the result obtained by previous appeals to the envelope theorem in static settings (Hsiang,
2016; Deryugina and Hsiang, 2017), but we now see that those settings were a rather special case: envelope
theorem arguments do not suffice to make actions irrelevant in a model with dynamic linkages. See also
footnote 36.

29Much literature has studied dependent variables such as crop yields (e.g., Schlenker and Roberts, 2009),
mortality (e.g., Deschênes and Moretti, 2009; Deschênes and Greenstone, 2011), and health (e.g., Deschenes,
2014) that are functions of actions but are not payoff functions. If we consider recovering the effects of climate
on such dependent variables from a fixed effects regression on weather, then the analogue of Proposition 1
no longer applies because the Euler equation (1) holds only for payoffs, not for other functions of actions.
However, the results of Section 5 will extend to these types of dependent variables.
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where χ > |π12|. We see time t actions determined by past, current, and future weather.
Actions depend on past weather in two ways. First, past weather affects the marginal payoffs
from current actions directly when π̄14 6= 0. This is a form of ex-post adaptation. Second,
past weather affects past actions, and these past actions affect current actions when π̄12 6= 0.30

When actions are intertemporal complements (π̄12 > 0), high values of past actions justify
higher actions today, but when actions are intertemporal substitutes (π̄12 < 0), high values
of past actions justify lower actions today. In the former case, maintaining the high action
over time reduces adjustment costs, but in the latter case, the past high action depletes the
resources needed to maintain a high action today.

Actions also depend on current weather, in three ways. First, actions respond to current
weather as a means of mitigating its immediate harm or amplifying its immediate benefits.
This channel is controlled by π̄13. Second, actions respond to current weather when current
actions can mitigate the harm or amplify the benefits incurred by current weather in future
periods. This channel is controlled by π̄24 and arises only for forward-looking agents. As an
example of the distinction between the two channels, an agent may avoid going outside on
a cold day both to minimize discomfort from the current temperature and to avoid getting
sick in the near future. Both of these channels are forms of ex-post adaptation. Third,
when π̄14 6= 0, the current weather will affect the agent’s chosen action in the next period. A
forward-looking agent adjusts her current action in preparation for that choice. This channel
vanishes when π̄12 = 0 because today’s actions then do not directly interact with subsequent
actions.

Finally, actions also depend on future weather, both directly and indirectly. The direct
channel reflects the possibility of ex-ante adaptation, controlled by π̄23. When today’s actions
are durable investments that can control the effects of future weather, the agent chooses
today’s actions based on expectations of that future weather. The indirect channel reflects
how the agent begins adjusting actions today in anticipation of the actions she will want to
take in the subsequent period. When the agent receives a higher forecast, she expects to
take a higher action in the subsequent period, controlled by π̄13 and βπ̄24. When π̄12 > 0,
the indirect channel leads the agent to choose high actions today as a means of reducing
adjustment costs, but when π̄12 < 0, the indirect channel leads the agent to choose low
actions today as a means of conserving resources.

We want to know how long-run actions change, on average, with the climate index C.

Lemma 3. Let either Assumption 1 or 2 hold, and let E0[(A1 − Ā)2] be small. Then, as
t→∞,

dE0[At]

dC
→ dĀ

dC
=

ex-post︷ ︸︸ ︷
π̄13 + π̄14 + βπ̄24 +

ex-ante︷︸︸︷
βπ̄23

−π̄11 − (1 + β)π̄12 − βπ̄22

≥ 0. (8)

30Because past actions are also affected by expectations of current weather, it is more precise to say that
current actions depend on past weather and past forecasts, not just past weather.
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Proof. The given conditions imply that Lemma 2 holds. The result follows from differenti-
ating equation (2) with respect to C via the implicit function theorem.

Expected future actions increase in the climate index because I normalized high actions to be
more beneficial when the weather index is large. Equation (8) captures how climate change
alters weather in all periods: the past, the present, and the future. We see the various forms
of ex-post adaptation captured by π̄13, π̄14, and βπ̄24. We also see the possibility of ex-ante
adaptation, controlled by π̄23 and arising because the agent understands that the altered
climate affects weather in subsequent periods. Finally, observe that π̄12 enters through the
denominator in (8). When actions are intertemporal substitutes (π̄12 < 0), this term reduces
the magnitude of the response to climate change, as when resource scarcity make long-
run responses smaller than short-run responses. However, when actions are intertemporal
complements (π̄12 > 0), this term increases the magnitude of the response to climate change,
as when adjustment costs allow long-run responses to exceed short-run responses.

Empirical researchers hope to recover (8) from time series variation in weather. Consider
the following fixed effects regression:

Ajt =αj + ψt + Γ1wjt + Γ2wj(t−1) + Γ3fjt + Γ4Aj(t−1) + ηjt, (9)

where I again label firms by j and ηjt is an error term that is uncorrelated with the covariates.
I again use a hat to denote the probability limit of each estimator. The following lemma
relates the estimated coefficients to the effect of climate change.

Lemma 4. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all obser-
vations. Then:

Γ̂1 + Γ̂2 + Γ̂3 = ω

(
dĀ

dC
+ β

π̄14 + π̄13 + βπ̄24

−π̄11 − (1 + β)π̄12 − βπ̄22

Ω

)
, (10)

where π̄12 > 0 implies ω ∈ (0, 1) and Ω > 0 and π̄12 < 0 implies ω > 1 and Ω < 0.

Proof. See appendix.

The three coefficients capture the three temporal relationships altered by climate change:
Γ̂1 recovers consequences of altering current weather, Γ̂2 recovers consequences of altering
past weather, and Γ̂3 recovers consequences of altering expectations of future weather. How-
ever, we cannot in general recover the response to a permanent change in climate from the
estimated response to transient weather shocks. The reason for this failure is the possibility
that π̄12 6= 0.

Relationships of intertemporal substitutability or complementarity drive two types of
wedges between the estimator in (10) and the effect of climate change in (8). First consider
adjustment cost stories, which have π̄12 > 0. The second term in parentheses in (10) reflects
how the agent adjusts today’s actions in expectation of today’s weather and forecast changing
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(a) Adjustment costs (b) Resource scarcity

Figure 2: The effects of climate and of transient weather shocks on actions, for cases with
adjustment costs (left) and resource scarcity (right). Points a, b, c, and d are as in Figure 1.
Point e depicts a case in which expected changes in weather are transient, and point f depicts
a case in which previous changes in weather were only transient.

tomorrow’s desired actions. Fixed effects estimators reflect idiosyncratic variation in weather,
so they reflect an agent desiring to choose different actions over time. In the presence of
adjustment costs, the agent shifts today’s actions towards the level that will be chosen
tomorrow (Ω > 0). This effect vanishes as actions become more similar between today
and tomorrow, so it tends to make today’s actions more responsive to idiosyncratic weather
shocks than to changes in climate that alter weather in all periods. The ω ∈ (0, 1) captures
how adjustment costs tend to diminish the magnitude of any change in actions. This effect
vanishes over time as the agent completes all of the desired adjustments, so it tends to
make actions less responsive to weather variation than to changes in climate.31 The biases
introduced by Ω and ω therefore conflict.

Now consider resource scarcity stories, which have π̄12 < 0. The second term in parenthe-
ses now reflects how the agent conserves resources for tomorrow by shifting today’s actions
away from the level that will be chosen tomorrow (Ω < 0). This effect again vanishes as
time passes and actions become more similar between today and tomorrow, so it tends to
make actions less responsive to weather variation than to changes in climate. The ω > 1
captures how resource scarcity tend to allow for more extreme actions when the actions will
be maintained for only a short period of time. As a result, actions are more responsive to
weather variation than to changes in climate. Once again, the two biases conflict.

Figure 2 illustrates the intuition. Begin with the left panel, which is a case of adjustment
costs. For exposition, ignore the possibility of ex-ante adaptation or delayed effects. As in
the left panel of Figure 1, the solid curves depict time t payoffs conditional on time t actions,

31This effect has the flavor of Le Châtelier’s principle.
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with point a indicating an action chosen in a typical period and point b indicating an action
chosen in a hotter period. The difference between points a and b is controlled by π̄13 and
reflects the effects of current weather in equation (7). Also as in the left panel of Figure 1,
the dashed curve reflects payoffs conditional on both the current period being hot and the
past period having been hot. When the previous period was hot, the agent chose higher
actions than otherwise. Those past choices of high actions reduce the cost of choosing high
actions in the current period. The current period’s choice of action therefore increases to
point c. The difference between points b and c is controlled by π̄12 and reflects the effects
of past weather in equation (7). Finally, point d reflects the implications of expecting the
subsequent period to again be hot and thus of expecting to choose a high action in the
subsequent period.32 The marginal benefit of choosing a high action in the current period
increases because high current actions reduce future adjustment costs. The agent’s optimal
action therefore increases to point d, where the marginal effect on current-year payoffs is
negative. The difference between points c and d is controlled by βπ̄13π̄12 and reflects the
effects of future weather in equation (7).

The action that will be desired in a subsequent period is more different from the current
period’s action when the high forecast reflects a transient shock. In that case, the adjustment
will be larger and the current period’s action increases to an even larger point, represented
by point e. The change to point e reflects Ω > 0 and illustrates how agents may respond
more strongly to transient weather shocks. In addition, past actions are lower following
a transient shock to past weather than they would be if a longer history of weather had
changed as a result of a shift in climate. The resulting adjustment costs bring payoffs closer
to the rightmost solid curve than to the dashed curve. Those adjustment costs reduce actions
to a point such as f. The change to point f reflects ω ∈ (0, 1) and illustrates how agents
may respond less strongly to transient weather shocks. It is difficult in general to determine
whether point f is to the left or to the right of point d because point f results from the
combination of a rightward shift from point d to point e and a leftward shift from point e to
point f.

The right panel of Figure 2 depicts a resource scarcity story. The solid curves and points
a and b are as before, and the dashed curve again depicts a case in which the previous period
was also hot and thus saw the agent choose high actions. However, that dashed curve has
now shifted down because the previous period’s high actions increase the cost of the current
period’s actions by having used scarce resources such as groundwater or time. Point c is
therefore now to the left of point b. Point d again reflects the expectation of the subsequent
period being hot, but it is now shifted to the left of point c because the expectation of high
actions in the subsequent period increases the benefit of freeing up resources by choosing

32For exposition, I have plotted points a, b, and c as occurring at the myopically optimal actions, where
π1 = 0. However, as described around equation (1), these points could in general have π1 6= 0. In either
case, point d would be to the right of point c under the given story.
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low actions in the current period.33 If the forecasted event is transient, then the subsequent
period’s action will be especially different from the current period’s action and the benefit
of freeing up resources that much larger. Point e is therefore now to the left of point d,
reflecting Ω < 0 and illustrating how agents may respond less to transient weather shocks.
However, past actions are also lower following transient weather shocks than following a shift
in climate, so resources are not as scarce in the current period if climate change has not yet
occurred. Point f therefore is now to the right of point e, reflecting ω > 1 and illustrating how
agents may respond more to transient weather shocks. It is difficult in general to determine
whether point f is to the left or to the right of point d because point f results from the
combination of a leftward shift from point d to point e and a rightward shift from point e to
point f.

The following proposition establishes special cases in which the biases vanish and in which
their net effect can be clearly signed.

Proposition 2. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all
observations.

1. Testing Intertemporal Substitutes/Complements: π̄12 < 0 if and only if Γ̂4 < 0.

2. Independence From Past Actions: If π̄12 = 0, then (i) Γ̂1 + Γ̂2 + Γ̂3 = dĀ/ dC and (ii)
Γ̂4 = 0.

3. No Ex-Ante Adaptation or Delayed Effects: If π̄23 = 0, then π̄12 < 0 if and only if
Γ̂3 < 0. If, in addition, π̄14, π̄24 = 0 and π̄13 > 0, then Γ̂1 > dĀ/ dC if and only if
π̄12 < 0.

4. No Ex-Post Adaptation: If π̄13, π̄14, π̄24 = 0 and βπ̄23 > 0, then (i) Γ̂3 > dĀ/ dC if
and only if π̄12 < 0 and (ii) Γ̂1 = Γ̂2 = 0.

5. Myopic Agents: If β = 0, then Γ̂3 = 0. If, in addition, either π̄13 > 0 or π̄14 > 0, then
Γ̂1 + Γ̂2 > dĀ/ dC if and only if π̄12 < 0.

Proof. See appendix.

The first result says that we can learn whether actions are intertemporal substitutes or
complements by considering the coefficient on previous actions. The second result confirms
that we can exactly recover the effect of climate from transient weather shocks when that
coefficient is zero. The intuition should be clear from the foregoing discussion: both sources
of bias vanish when π̄12 = 0, with ω = 1 and Ω = 0.

33In general, point d could be to the right or the left of point c because the effects of βπ̄23 conflict with
the channel discussed here, but I am temporarily ignoring the possibility of ex-ante adaptation.
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The remaining results describe cases in which we cannot exactly recover the response
to a long-run change in climate but can sign the bias in our estimate. The third result
describes a case without either ex-ante adaptation or delayed effects, so that only current
weather matters and people respond to that weather only as it happens. This case may
adequately describe household decisions about how to set a thermostat. If there is no ex-ante
adaptation, then forecasts matter only because they shape expectations of future actions,
not because they allow actions that can directly interact with future weather. And if there
are no delayed effects, then we do not need to concern ourselves with the direct consequences
of past weather. Γ̂1 then captures all the channels of interest and is distorted only via the ω
in equation (10).

In contrast, the fourth result considers a case without ex-post adaptation. Here adapta-
tion actions require a lead time, as with the decision to buy an air conditioning unit or the
decision about which crop to plant. In this case, current weather should have no effect on
observed actions and the effects of climate change arise only through altered expectations,
not through effects on either current or past weather. Γ̂3 then captures all the channels of
interest and is distorted only via the ω in equation (10).

Some previous literature has highlighted expectations as being the sole difference between
weather and climate (e.g., Hsiang, 2016; Deryugina and Hsiang, 2017), but the final result
shows that differences remain even for myopic agents, for whom expectations are irrelevant.
Forecasts do not matter to myopic agents (Γ̂3 = 0), but their responses to weather still fail
to recover the effect of climate change. The reason is that their current actions do depend
on past actions, even though they fail to anticipate this dependence. This dependence
constrains short-run responses when actions are intertemporal complements and constrains
long-run responses when actions are intertemporal substitutes. Formally, setting β = 0 in
equation (10) eliminates the bias introduced by Ω but does not eliminate the bias introduced
by ω.

We have developed intuition and results for a regression like (9), but the empirical lit-
erature has, almost without exception, not estimated that type of specification. Instead,
researchers have often estimated regressions of the form

Ajt =αj + ψt + γ1wjt + γ2wj(t−1) + δjt. (11)

Note that the error term δjt is now correlated with the covariates because it includes fjt and
Aj(t−1).

34 We then have:

34One could in principle include Aj(t−1) as a control on the right-hand side of‘(11), but standard advice
(e.g., Angrist and Pischke, 2009, Chapter 5) recommends against controlling for both fixed effects and lagged
dependent variables because of the likelihood of introducing Nickell (1981) omitted variables bias. Standard
practice in the empirical climate-economy literature has emphasized fixed effects instead of lagged dependent
variables, as seen in the appendix to Dell et al. (2014). Controlling for Aj(t−1) would not change the primary
results in Proposition 3.
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Proposition 3. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all
observations.

1. Fix π̄12 = 0 and consider γ̂1:

(a) γ̂1 = dĀ/ dC if π̄14 = 0 and βπ̄23 = 0.

(b) γ̂1 ∈ (Γ̂1, dĀ/ dC) if ρβπ̄23 > 0.

(c) γ̂1 = Γ̂1 if ρβπ̄23 = 0.

2. Fix π̄12 = 0 and consider γ̂1 + γ̂2:

(a) γ̂1 + γ̂2 = dĀ/ dC if βπ̄23 = 0.

(b) γ̂1 + γ̂2 ∈ (Γ̂1 + Γ̂2, dĀ/ dC) if ρβπ̄23 > 0.

(c) γ̂1 + γ̂2 = Γ̂1 + Γ̂2 if ρβπ̄23 = 0.

3. If β = 0, then γ̂1 < dĀ/ dC if π̄12 > 0. If, in addition, π̄14 = 0, then γ̂1 > dĀ/ dC if
π̄12 < 0.

Proof. See appendix.

Regression (11) does not control for forecasts or for past actions, so these affect the estimators
γ̂1 and γ̂2 as omitted variables. The first set of results establishes what we can learn from γ̂1,
which is the coefficient of interest in much previous empirical literature. Assume that the
marginal benefit of current actions is independent of past actions (π̄12 = 0). γ̂1 captures part
of the effect of time t forecasts through their covariance ρ with εt; however, the proof shows
that γ̂1 can never capture the total effect of forecasts. Omitted variables bias helps, but
it cannot replace explicitly controlling for forecasts. Further, γ̂1 also misses the interaction
between time t actions and past weather. Putting these pieces together, γ̂1 can fully recover
climate impacts only if there is no ex-ante adaptation that would use forecasts (βπ̄23 = 0) and
past weather shocks do not affect actions directly (π̄14 = 0). In other cases, γ̂1 underestimates
the effect of climate change by only partially capturing these channels. The performance
of γ̂1 improves as weather becomes more serially correlated (i.e., as ρ increases) because
omitted variables bias becomes stronger, but one could do better by estimating equation (9)
and combining Γ̂1 with Γ̂2 and Γ̂3.

The second set of results shows that combining γ̂1 and γ̂2 captures the interaction between
time t actions and past weather but still fails to capture the total effect of forecasts. Omitted
variables bias can make γ̂1 + γ̂2 perform better than Γ̂1 + Γ̂2, but if weather is serially
uncorrelated (ρ = 0), then omitted variables bias from forecasts vanishes and these two
estimators are equivalent. And researchers could always do better by estimating equation (9)
and combining Γ̂1 + Γ̂2 with Γ̂3.

The final result again shows that expectations are not the only factor driving a wedge
between weather and climate. When actors are myopic (β = 0) and current actions are
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independent of previous weather (π̄14 = 0), climate directly matters for decision-making
only by affecting present weather. However, the effect of climate on past weather matters
indirectly even in this case by shaping past actions. When actions are intertemporal sub-
stitutes (π̄12 < 0), these past actions constrain the long-run response to climate more than
the response to transient weather events, but when actions are intertemporal complements
(π̄12 > 0), these past actions constrain the response to transient weather events more than
the long-run response to climate.

5 Estimating the Effect of Climate on Payoffs

Now return to regression (6). We previously analyzed this regression using Assumption 3,
but we are now interested in whether it can recover the effects of climate when Assumption 3
does not hold.

Proposition 4. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations and let each
agent’s average actions be Ā. Then, for s large and K > 2,

1. The Estimators: θ̂wt = π̄3 + π̄1Γ̂1 and θ̂ft = π̄1Γ̂3. If π̄12 = 0, then θ̂wt−1 = π̄4 + π̄2Γ̂1 +

π̄1Γ̂2, θ̂ft−1 = π̄2Γ̂3, and θ̂wt−2 = π̄2Γ̂2.

2. Independence From Past Actions: If π̄12 = 0, then dE0[πs]/ dC = θ̂wt + θ̂wt−1 + θ̂wt−2 +

θ̂ft + θ̂ft−1.

3. No Ex-Ante Adaptation or Delayed Effects: Let π̄23, π̄14, π̄24 = 0 and π̄13 > 0. Then
θ̂wt + θ̂wt−1 < dE0[πs]/ dC if and only if π̄2π̄12 > 0.

4. No Ex-Post Adaptation: Let π̄13, π̄14, π̄24 = 0 and βπ̄23 > 0. Then θ̂wt + θ̂wt−1 + θ̂ft +

θ̂ft−1 < dE0[πs]/ dC if and only if π̄2π̄12 > 0.

5. Myopic Agents: If β = 0, then θ̂ft = θ̂ft−1 = 0. If, in addition, either π̄13 > 0 or

π̄14 > 0, then θ̂wt + θ̂wt−1 + θ̂wt−2 < dE0[πs]/ dC if and only if π̄2π̄12 > 0.

Proof. See appendix.

From equation (4), estimating the effects of climate on payoffs requires estimating four
terms: π̄3, π̄4, π̄1[ dĀ/ dC], and π̄2[ dĀ/ dC]. The first result of the proposition shows that
the coefficients from (6) are closely related to these terms. The second result shows that
we can recover the effect of climate on payoffs when π̄12 = 0. From Proposition 2, we know
that Γ̂1 + Γ̂2 + Γ̂3 recovers the effect of climate on actions when π̄12 = 0. The first part
of Proposition 4 showed that θ̂wt and θ̂wt−1 recover Γ̂1 (the consequences of altering current
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weather), θ̂wt−1 and θ̂wt−2 recover Γ̂2 (the consequences of altering past weather), and θ̂ft and

θ̂ft−1 recover Γ̂3 (the consequences of altering expectations of future weather). The coefficient
in each pair with the larger time index captures the effect on payoffs via current actions and
the other coefficient captures the effect on payoffs via past actions. Therefore, summing
θ̂wt , θ̂wt−1 , θ̂wt−2 , θ̂ft , and θ̂ft−1 recovers (π̄1 + π̄2)[ dĀ/ dC] when π̄12 = 0. When neither
adjustment cost nor resource scarcity stories apply, we can recover the effect of climate on
payoffs from a regression with sufficiently long lags of weather and forecasts.35

The third part of the proposition signs the bias in our estimate of the effect of climate
on payoffs when π̄12 6= 0 but there is no ex-ante adaptation or delayed effects. In this
case, only current weather matters for actions. This channel is captured by θ̂wt + θ̂wt−1 .
From Proposition 2, we know that adjustment costs and resource scarcity each lead us to
misestimate effects on actions: Γ̂1 > dĀ/ dC if and only if π̄12 < 0. Equation (5) showed that
undertaking more actions because of climate change provides benefits if and only if π̄2 > 0.
Therefore, θ̂wt + θ̂wt−1 is an overly pessimistic estimate of the effects of climate on payoffs in
two cases: when actions are beneficial and variation in weather underestimates how actions
respond to climate change (π̄2, π̄12 > 0), and when actions impose costs and actions respond
less to climate change than to short-lived changes in weather (π̄2, π̄12 < 0). Intuitively, a
case with π̄2, π̄12 > 0 is one in which actions are costly to adjust and are undertaken for
future benefits, as with diverting crops to storage, and a case with π̄2, π̄12 < 0 is one in
which actions impose long-run costs but will not be maintained for long, as may be true of
groundwater withdrawals. In either case, extrapolating from responses to weather overstates
the cost of climate change; in other cases, the estimator θ̂wt + θ̂wt−1 is an overly optimistic
estimate of the effect of climate change.

The fourth part of the proposition signs the bias in our estimate of the effect of climate
on payoffs when π̄12 6= 0 but there is no ex-post adaptation. In this case, only expectations
of future weather matter for actions. This channel is is captured by θ̂ft + θ̂ft−1 . From
Proposition 2, we know that adjustment costs and resource scarcity lead us to misestimate
effects on actions: Γ̂3 > dĀ/ dC if and only if π̄12 < 0. From here, the intuition for the
result follows the case without ex-ante adaptation or delayed effects.

The final result considers a case with myopic agents. When agents are myopic, the
Euler equation (1) implies that π̄1 = 0. The effects of climate on current actions no longer
matter for payoffs, but the effects of climate on past actions can still matter for payoffs.36

35The requirement that K > 2 ensures that omitted variables bias does not affect the needed coefficients.
If we allowed for longer lags in the consequences of weather and/or in the consequences of forward-looking
investments, then the estimator of climate consequences would include longer lags of forecasts and weather
than the estimator described in part 2 of Proposition 4. We would then require that K be strictly larger
than the longest lag.

36Because myopic agents solve a static decision problem, the envelope theorem now makes current actions
independent of payoffs. But a static decision problem is not equivalent to a static decision-making environ-
ment: because past actions are predetermined variables, the envelope theorem has no bearing on how the
decision problems are linked through the history of weather. In Figures 1 and 2, even myopic agents find
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Proposition 2 already established that we tend to underestimate changes in actions when
π̄12 > 0. In this case, we estimate an overly pessimistic effect of climate on payoffs if and only
if past actions provide current benefits (π̄2 > 0). On the other hand, we tend to overestimate
the changes in actions when π̄12 < 0. In this case, we estimate an overly optimistic effect of
climate on payoffs if and only if past actions impose current costs (π̄2 < 0). Stripping away
expectations does not eliminate all of the dynamic linkages that differentiate climate from
weather.

Propositions 1 and 4 assumed that each agent’s average actions are Ā. The following
corollary establishes how relaxing this assumption changes the results.

Corollary 5. Let the conditions given in Proposition 4 hold, except let each agent’s average
actions be strictly greater than Ā. Then, for s large and K > 2,

1. θ̂ft = π̄1Γ̂3 and, if either π̄13 > 0 or π̄23 > 0, θ̂wt > π̄3 + π̄1Γ̂1. If π̄12 = 0, then

θ̂ft−1 = π̄2Γ̂3, θ̂wt−2 = π̄2Γ̂2, and, if either π̄14 > 0 or π̄24 > 0, θ̂wt−1 > π̄4 + π̄2Γ̂1 + π̄1Γ̂2.

2. If Assumption 3 holds and at least one of π̄13, π̄23, π̄14, or π̄24 is strictly positive, then
dE0[πs]/ dC = π̄3 + π̄4 < θ̂wt + θ̂wt−1.

3. If π̄12 = 0 and at least one of π̄13, π̄23, π̄14, or π̄24 is strictly positive, then dE0[πs]/ dC <
θ̂wt + θ̂wt−1 + θ̂wt−2 + θ̂ft + θ̂ft−1.

The inequalities reverse if, instead, each agent’s average actions are strictly less than Ā.

Proof. See appendix.

The first part of the corollary establishes that the bias from average actions not yet having
reached the steady state enters through θ̂wt and θ̂wt−1 . The remaining parts of the corollary
establish that the special cases that formerly sufficed to identify climate impacts from weather
impacts now merely bound the effect of climate on payoffs. In particular, we obtain an upper
bound if agents are approaching their steady-state actions from above and a lower bound
otherwise. Intuitively, if climate shifts the steady-state action farther from the agent’s current
action, then any weather shocks incorporate transition costs that vanish from the effect of
climate on long-run payoffs.

In practice, empirical researchers have not estimated equations like (6). Instead, empirical
researchers have rarely controlled for forecasts and often have not controlled for lagged
weather outcomes.37 Conventional regressions are closer to

πjt =αj + ψt +XjtΦ + δjt, (12)

point c instead of remaining at point b following a weather shock.
37Distributed lag models are more commonly estimated when mortality is the dependent variable (e.g.,

Deschênes and Moretti, 2009) than when payoffs are the dependent variable.
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where the vector of covariates Xjt is now[
wjt wj(t−1) ... wj(t−K)

]
.

The error term δjt now includes not only actions but also current and past forecasts. We
are interested in the vector of coefficients Φ. I denote each element with a subscript corre-
sponding to the covariate it multiplies, and I again use a hat to denote the probability limit
of each element. A superscript on each Φ̂ now denotes the value of K.

The following proposition relates these estimates to the desired effect of climate on pay-
offs.

Proposition 6. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations, let each
agent’s average actions be Ā, and let s be large.

1. Let Assumption 3 hold. Then:

(a) Φ̂K
wt + Φ̂K

wt−1
= dE0[πs]/ dC if K = 1 or K = 2.

(b) Φ̂0
wt < dE0[πs]/ dC if and only if π̄4 > 0.

2. Let π̄12 = 0 and βπ̄23 = 0. Then:

(a) Φ̂2
wt + Φ̂2

wt−1
+ Φ̂2

wt−2
= dE0[πs]/ dC.

(b) If π̄14 = 0, then Φ̂1
wt + Φ̂1

wt−1
= dE0[πs]/ dC.

(c) If π̄4 = 0 and π̄13 > 0, then Φ̂0
wt < dE0[πs]/ dC if and only if π̄2 > 0.

Proof. See appendix.

The first result establishes that we can still recover the full effect of climate on payoffs if
Assumption 3 holds and K > 0. Responses to forecasts generally identify ex-ante adaptation,
but small changes in adaptation are irrelevant for payoffs when Assumption 3 holds. And
Assumption 3 further implies that responses to forecasts do not induce omitted variables
bias in (12). We can therefore recover the effect of climate from Φ̂K

wt + Φ̂K
wt−1

.
However, the second result establishes that π̄12 = 0 no longer suffices to recover the effects

of climate on payoffs. Because regression (12) fails to control for forecasts, the estimated
coefficients no longer fully capture the possibility of ex-ante adaptation based on expectations
of future weather.38 We must therefore introduce a further assumption—that there is no ex-
ante adaptation (βπ̄23 = 0)—in order to recover the effect of climate. If we estimate a model

38Some of this ex-ante adaptation is captured through omitted variables bias in the plausible case where
weather and forecasts are positively correlated (i.e., where ρ > 0), but the proof shows that it can never be
captured completely.
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with only a single lag of weather, then we must also limit the interaction between actions and
past weather by assuming that π̄14 = 0. And if we follow much of the empirical literature in
estimating a model without any lags of weather, then recovering the effects of climate change
further requires the absence of adaptation to current weather (π̄13 = 0) and the absence of
any lagged effects of weather (π̄4 = 0). These strong assumptions are unlikely to hold in
many applications of interest.39

6 Aggregating over Longer Timesteps

In actual empirical work, the proper timestep of analysis may be unclear, computational
requirements may require using coarser timesteps, or data may be available only over coarser
timesteps. We therefore now consider the implications of aggregating weather and payoffs
over longer timesteps.

Assume, as before, that all agents are in the same climate and that this climate is sta-
tionary. The empirical researcher averages outcomes over ∆ periods.40 Denote the averages
with a tilde and use the time subscript to indicate the beginning of the averaging interval,
so that, for instance, π̃jt ,

∑t+∆−1
T=t πjT/∆. Consider estimating the regression

π̃jt = Λw̃jt + ũjt,

where I assume that the averaging intervals do not overlap and that ũjt is uncorrelated with
w̃jt.

The following proposition establishes properties of the estimator Λ̂.

Proposition 7. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations and let each
agent’s average actions be Ā. Then the following conditions are individually sufficient for
dE0[πs]/ dC → Λ̂ as s,∆→∞:

1. Assumption 3 holds.

39Rather than focusing on the Φ̂, Deryugina and Hsiang (2017) undertake a different calcula-
tion. Let p(wt;C) represent the probability density function for weather in climate C. They esti-
mate π(At(wt), At−1(wt), wt, wt−1(wt)) − π(At(w

0), At−1(w0), w0, wt−1(w0)) for each wt, where w0 in-
dicates the omitted category and where we write At−1(wt) and wt−1(wt) in order to focus on
questions besides the evaluation point. They calculate the marginal effect of climate from the

following expression:
∫∞
−∞

[
π(At, At−1, wt, wt−1)− π(At, At−1, w

0, wt−1)
] dp(wt;C)

dC dwt , Ψ. Analyz-

ing, we find Ψ = Cov

[
π(At, At−1, wt, wt−1),

dp(wt;C)
dC

p(wt;C)

]
. If wt is normally distributed, then Ψ =

Cov [π(At, At−1, wt, wt−1), wt] /V ar[wt], which, following the proof of Proposition 6, is equal to Φ̂0
wt

. Propo-
sition 6 shows that this estimator recovers the effects of climate change in only the most special of cases.

40The results do not depend on whether the operation is averaging or summing.
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2. ρ, π̄12, βπ̄23 = 0.

3. ρ, π̄12 = 0 and σ2/τ 2 = 0.

Proof. See appendix.

The proof shows that, for ∆ > 2, the estimator is

Λ̂ = Φ̂0
wt +

∆− 1

∆
Υ1 +

∆− 2

∆
Υ2,

with Υ1,Υ2 ≥ 0. As ∆ becomes small, the long-timestep estimator Λ̂ converges towards Φ̂0
wt ,

which Proposition 6 showed can approximate the effect of climate change in only the most
special of cases. As ∆ becomes large, the coefficients on Υ1 and Υ2 go to 1. This is the case
considered by Proposition 7. As ∆ becomes large, Λ̂ recovers the effect of climate change in a
broader set of cases than does Φ̂0

wt : the process of aggregating ∆ time periods into one picks
up correlations between current payoffs and lags and leads of weather within these ∆ periods.
However, Λ̂ underperforms estimators analyzed in Section 3. In particular, for ρ, π̄12 = 0
and ∆ large, the estimator Λ̂ recovers the effect of climate only in the absence of ex-ante
adaptation, which was the same restriction required by the estimator Φ̂2

wt + Φ̂2
wt−1

+ Φ̂2
wt−2

studied in Proposition 6.41

The estimator Λ̂ is therefore closely to the panel regression (12). This insight has im-
plications for a recent literature developing “long difference” estimates of climate impacts.
Rather than estimating either a cross-sectional or a panel model, this method instead aver-
ages weather and outcomes over two non-overlapping periods, differences the averages, and
estimates how the differenced dependent variable changes with differenced average weather
(e.g., Dell et al., 2012; Burke and Emerick, 2016). To many, this approach’s appeal rests
in providing “plausibly credible causal estimates of climate impacts that account for adap-
tation” (Auffhammer, 2018b, 45): differencing removes the unobserved fixed factors that
may covary with climate in a cross-sectional regression, and the variation induced by spa-
tially heterogeneous rates of climate change may identify the long-run adaptations missing
from standard panel regressions. On this reasoning, comparing long difference estimates
to standard panel estimates indicates whether short-run adaptation differs from long-run
adaptation.

In the present setting, there is no climate change (C is constant over time), yet it is
easy to show that the estimator Λ̂ is equivalent to a long difference estimator. Proposition 7

41When there is ex-ante adaptation, the third case in Proposition 7 shows that Λ̂ improves on Φ̂2
wt

+

Φ̂2
wt−1

+ Φ̂2
wt−2

as ∆ becomes large. This improvement arises because Λ̂ picks up correlation between payoffs

and leads of weather, which accounts for more ex-ante adaptation than does Φ̂2
wt

+ Φ̂2
wt−1

+ Φ̂2
wt−2

as ∆
becomes large.
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therefore implies that long difference estimators are in fact identified by random differences
in sequences of transient weather shocks over the aggregation intervals. At best, the long
difference estimator conflates this variation with differential rates of climate change, but
at worst, it captures nothing but the same transient weather shocks as do the estimators
in (12).42 Intuitively, averaging over several periods does not eliminate the old sources of
variation and need not introduce new sources of variation. In fact, previous work has found
that long difference and panel estimators produce similar results (Burke and Emerick, 2016).
We now see that this result should be unsurprising: rather than indicating the absence of
long-run adaptation, the similarity may in fact be mechanical.

7 Caveats and Potential Extensions

I have demonstrated how to estimate the effects of climate change from time series variation
in weather. The setting is fairly general. Nonetheless, the results are subject to several
caveats.

First, the present setting successfully captures the distinction between transient and
permanent changes in weather, but global climate change also differs from most weather
shocks in its spatial structure. A change in global climate affects weather in every location
and thus will have general equilibrium consequences. The present setting has followed most
empirical work in abstracting from such effects, but some recent empirical work has begun
exploring the implications of changing the weather in many locations simultaneously (e.g.,
Costinot et al., 2016; Gouel and Laborde, 2018; Dingel et al., 2019). Future work should
extend the present setting to account for general equilibrium effects.

Second, the present analysis has held the payoff function fixed over time. However,
climate change should induce innovations that alter how weather affects payoffs, and many
such innovations will arise even in the absence of climate change. Some types of innovation
can be interpreted as actions within the present framework, but estimating future innovation
poses distinct challenges. Historical studies have begun exploring the interaction between
climate and agricultural innovation (e.g., Olmstead and Rhode, 2008, 2011; Roberts and
Schlenker, 2011; Bleakley and Hong, 2017), but the potential for future innovation may be
inherently unobservable. Future work should consider approaches to bounding the scope for
innovation.

Third, the present analysis has considered only marginal changes in climate, but cli-
mate change over the next century is likely to be nonmarginal. One could approximate the
consequences of nonmarginal changes in climate by summing the estimates from fixed ef-
fects regressions undertaken in different climate zones. Time series variation then identifies

42That worst case arises when the climate actually did not change differentially (as modeled here) or when
agents were not aware of ongoing changes in climate. See Dell et al. (2014) and Burke and Emerick (2016)
for discussion of awareness of climate change.
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the consequences of marginal changes in climate and cross-sectional variation identifies the
consequences of nonmarginal changes in climate. Similar approaches to combining panel
and cross-sectional variation have recently been summarized by Auffhammer (2018b). How-
ever, two considerations call for caution when extrapolating reduced-form estimates to large
changes in climate: the use of cross-sectional variation raises the usual concerns about iden-
tification, which becomes more severe as that cross-sectional variation is asked to do more
work, and higher-order effects are likely to become relevant to nonmarginal climate change,
even though absent from a summation of estimated marginal effects. Future work should
explore whether nonlinear responses to weather shocks can inform nonmarginal consequences
of climate change.43

Fourth, the present analysis has ignored the possibility of fixed costs to changing actions.
In the presence of fixed costs, an agent may choose to change an action only when the agent
expects a change in weather to endure.44 Future work should explore the conditions under
which aggregating over many agents’ fixed-cost decisions makes actions appear continuous.
Future work should also explore whether the duration of forecasts or realized weather events
can identify how fixed cost actions respond to a change in climate.

Finally, the present analysis has focused on identifying the long-run consequences of
climate change, abstracting from the transition costs induced by climate change. In this
regard, the present analysis matches the calculations undertaken by nearly all empirical
work but omits a potentially critical aspect of climate change (see Quiggin and Horowitz,
1999, 2003; Kelly et al., 2005). Future work should consider whether imposing stronger
assumptions on the decision-making environment can identify the costs of full-information
transitions. Further, the project of the paper has been to study the potential for reduced-form
empirical work to recover the effects of climate, but future work should consider the potential
to estimate structural models that could credibly simulate outcomes along counterfactual
climate trajectories. The present analysis suggests that such structural models could be
calibrated to replicate reduced-form estimates of the effects of marginal climate change.
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A Proof of Lemma 1

The case with π12 = 0 is trivial. I therefore analyze cases with π12 6= 0.
Begin by considering the uniqueness of the steady state. The right-hand side of equa-

tion (2) monotonically decreases in Ā if and only if (1 + β)π12 < −π11 − βπ22. Thus, the
steady state is unique if (1 + β)π12 < −π11 − βπ22, which is satisfied for all π12 < 0.

Now consider the stability of the steady state. Define A∗t+1(At, At−1) from the Euler
equation. Linearizing around Ā gives a first-order difference equation:

At+1 − Ā ≈
−π̄11 − βπ̄22

βπ̄12

(At − Ā)− 1

β
(At−1 − Ā).

And we have At = At. The product of the linearized-system’s eigenvalues is 1
β
> 1, and

the sum of the linearized system’s eigenvalues is −π̄11−βπ̄22
βπ̄12

, which is positive if and only if
π̄12 > 0.

First, assume that π̄12 > 0. Both eigenvalues are positive and at least one is greater than
1. The characteristic equation is

λ2 − −π̄11 − βπ̄22

βπ̄12

λ+
1

β
,

where λ defines the eigenvalues. The smaller eigenvalue is less than 1 if and only if the
characteristic equation is negative at λ = 1, and therefore if and only if

−π̄11 − βπ̄22 >(1 + β)π̄12.

In this case, the linearized system is saddle-path stable.
Now assume that π̄12 < 0. Both eigenvalues are negative and at least one is less than

−1. The characteristic equation is as before. The larger eigenvalue is greater than −1 if and
only if the characteristic equation is negative at λ = −1, and therefore if and only if

−π̄11 − βπ̄22

π̄12

+ 1 + β <0

⇔ −π̄11 − βπ̄22 >− (1 + β)π̄12.

In this case, the linearized system is saddle-path stable.
The proposition follows from a standard application of the Hartman-Grobman theo-

rem and from noticing that the conditions for saddle-path stability imply the condition for
uniqueness.
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B Proof of Lemma 2

I first describeAt, under the assumption that (At−1−Ā)2 is small. WriteAt+1 asA(At, wt+1, ft+1, wt; ζ).
Expanding the stochastic Euler equation around ζ = 0 and noting that all terms of order ζ2

or larger depend on at least the third derivative of π, either Assumption 1 or 2 ensures that
we can drop all terms of order ζ2 or larger. We therefore have:

0 =π1(At, At−1, wt, wt−1) + βEt

[
π2(Ãt+1, At, ft, wt) + π23(Ãt+1, At, ft, wt)εt+1ζ

]
+ βEt

[
π12(Ãt+1, At, ft, wt)

(
∂At+1

∂ζ

∣∣∣∣
ζ=0

+
∂At+1

∂wt+1

∣∣∣∣
ζ=0

εt+1 +
N∑
i=1

∂At+1

∂fi(t+1)

∣∣∣∣
ζ=0

εi(t+1)

)
ζ

]

=π1(At, At−1, wt, wt−1) + βπ2(Ãt+1, At, ft, wt) + βπ12(Ãt+1, At, ft, wt)
∂At+1

∂ζ

∣∣∣∣
ζ=0

ζ, (B-1)

where Ãt+1 , A(At, ft, C, wt; 0).
I next establish two lemmas. The first one shows that uncertainty does not have a

first-order effect on policy:

Lemma 5. ∂At+1

∂ζ

∣∣∣
(Ā,C,C,C;0)

= 0.

Proof. Equation (B-1) defines At as a function of At−1, wt, ft, and ζ. Note that

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

=

βπ̄12

(
∂At+1

∂ζ

∣∣∣
(Ā,C,C,C;0)

+ ∂2At+1

∂ζ2

∣∣∣
(Ā,C,C,C;0)

ζ

)
−π̄11 − βπ̄22 − βπ̄122

∂At+1

∂ζ

∣∣∣
ζ=0

ζ − βπ̄12
∂2At+1

∂ζ∂At

∣∣∣
ζ=0

ζ

=
βπ̄12

−π̄11 − βπ̄22

∂At+1

∂ζ

∣∣∣∣
(Ā,C,C,C;0)

,

where the second equality applies ζ = 0. Forward-substituting, we have:

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

=

(
βπ̄12

−π̄11 − βπ̄22

)j
∂At+j
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

for j ∈ Z+. The term in parentheses is < 1 by the condition imposed following Lemma 1.
Because At+j evaluated around At+j−1 = Ā, wt = C, ft = C, and ζ = 0 must be Ā, we know
that At+j is not infinite. The derivative on the right-hand side must also be finite, in which
case the right-hand side goes to 0 as j becomes large. Therefore:

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

= 0.

Because the choice of t was arbitrary, we have established the lemma.
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The second lemma solves for Ãt+1:

Lemma 6. If either Assumption 1 or 2 holds and (At − Ā)2 is small, then there exists λ
such that |λ| < 1 and

Ãt+1 =Ā+
π̄12

−π̄11 − βπ̄22 − βπ̄12λ
(At − Ā) +

π̄14

−π̄11 − βπ̄22 − βπ̄12λ
(wt − C)

+
π̄13 + βπ̄24

−π̄11 − βπ̄22 − βπ̄12λ
(ft − C).

Proof. For ζ = 0, the weather in period t+ 1 matches the forecast in ft, and the weather is
always C after period t+ 1. Begin by solving for policy after period t+ 1. The characteristic
equation given in the proof of Lemma 1 implies the following two eigenvalues:

λ, µ =
−π̄11 − βπ̄22

2βπ̄12

±

√(
−π̄11 − βπ̄22

2βπ̄12

)2

− 1

β
.

The proof of Lemma 1 showed that the two eigenvalues have the same sign. Let λ be the
eigenvalue that is smallest in absolute value. We seek the eigenvector corresponding to λ,
which is the stable manifold. The eigenvector is defined by (At+2 − Ā) − λ(At+1 − Ā) = 0,
and thus

Ãt+2 = λAt+1 + (1− λ)Ā,

for some At+1.
Now consider policy at time t+ 1. The relevant Euler equation is:

0 = π1(Ãt+1, At, ft, wt) + βπ2(Ãt+2, Ãt+1, C, ft),

where we recognize that wt+1 = ft. A first-order approximation to Ãt+1 around Ā and the
solution for Ãt+2 is exact when either Assumption 1 or 2 holds and (At − Ā)2 is small. We
then have the expression in the lemma.

Applying Lemmas 5 and 6 to equation (B-1), we have:

0 =π1(At, At−1, wt, wt−1) + βπ2(Ãt+1(At, ft, wt), At, ft, wt). (B-2)

We now have At implicitly defined as A(At−1, wt, ft, wt−1; 0). If (At−1 − Ā)2 is small and
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either Assumption 1 or 2 holds, then we have:

At =Ā+
∂At
∂At−1

∣∣∣∣
(Ā,C,C,C;0)

(At−1 − Ā) +
∂At
∂wt

∣∣∣∣
(Ā,C,C,C;0)

(wt − C) +
∂At
∂ft

∣∣∣∣
(Ā,C,C,C;0)

(ft − C)

+
∂At
∂wt−1

∣∣∣∣
(Ā,C,C,C;0)

(wt−1 − C) +
∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

ζ

=Ā+
π̄12

χ
(At−1 − Ā) +

π̄13 + βπ̄24 + βπ̄14
π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
(wt − C)

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
(ft − C) +

π̄14

χ
(wt−1 − C),

where we use Lemma 5 in the first equality and where

χ , −π̄11 − βπ̄22 − βπ̄12
π̄12

−π̄11 − βπ̄22 − βπ̄12λ
.

The condition imposed following Lemma 1 and the fact that |λ| < 1 together ensure that
χ > |π̄12|.

Now use this result to analyze E0[At]. If either Assumption 1 or 2 holds and E0[(A1−Ā)2]
is small, then

E0[A2] =Ā+
π̄12

χ
(E0[A1]− Ā).

E0[(A2 − Ā)2] must be small because |π̄12|/χ < 1. Iterating forward, we find, for t > 1,

E0[At] =Ā+

(
π̄12

χ

)t−1

(E0[A1]− Ā).

As t→∞, we have:

E0[At]→Ā.

We have proved the desired result.

C Proof of Proposition 1

The estimated coefficients are θ̂ = E[X̃T
KX̃K ]−1E[X̃Kπt], where each row of X̃k is[

wjt − C fjt − C wj(t−1) − C fj(t−1) − C ... wj(t−K) − C fj(t−K) − C
]

and the rows correspond to the J observations. Subtracting C demeans each covariate, as
implied by the fixed effects. The following lemma establishes that the coefficients on wjt,
fjt, and wj(t−1) are the same for all K ≥ 2:
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Lemma 7. It K ≥ 2, then the first four elements of E[X̃T
KX̃K ]−1E[X̃Kπt] are identical to

the first four elements of E[X̃T
2 X̃2]−1E[X̃2πt].

Proof. The goal is to show that the first four rows of E[X̃T
KX̃K ]−1 are equal to the first four

rows of E[X̃T
2 X̃2]−1 extended to have zeros in columns 7 through 2(K + 1).

The case with K = 2 holds trivially, so assume that K > 2. First, note that

E[X̃T
KX̃K ] =

[
E[X̃T

K−1X̃K−1] CK−1

CT
K−1 D

]
,

where CK−1 is a 2K × 2 matrix with the only nonzero entries being in row 2K − 1, which is
[Jζ2ρ Jζ2τ 2], and where

D = Jζ2

[
σ2 + τ 2 ρ

ρ τ 2

]
.

Define

BK ,

[
E[X̃T

K−1X̃K−1] CK−1

CT
K−1 D̂

]
,

where

D̂ = Jζ2

[
σ2 ρ
ρ τ 2

]
.

Note that45

BK−1 = E[X̃T
K−1X̃K−1]− CK−1D

−1CT
K−1.

Then, using standard results for block matrix inversion,

E[X̃T
KX̃K ]−1 =

[
B−1
K−1 −B−1

K−1CK−1D
−1

−D−1CT
K−1B

−1
K−1 D−1 +D−1CT

K−1B
−1
K−1CK−1D

−1

]
.

We are concerned with the top row. Note that CK−1D
−1 has zeros up to row 2K − 1, so it

has zeros in its first four rows. It remains to consider B−1
K−1. We prove by induction that

B−1
K−1 has the desired form. The basis step considers B−1

2 . This is

B−1
2 =

1

Jζ2[σ2τ 2 − ρ2]


τ 2 −ρ 0 −τ 2 0 0
−ρ σ2 0 ρ 0 0
0 0 τ 2 −ρ 0 −τ 2

−τ 2 ρ −ρ σ2 + τ 2 0 ρ
0 0 0 0 τ 2 −ρ
0 0 −τ 2 ρ −ρ σ2 + τ 2

 .

45The only nonzero entries in the 2K × 2 matrix CK−1D
−1 are in row 2K − 1, which is [0 1], and thus

the only nonzero entry in the 2K × 2K matrix CK−1D
−1CT

K−1 is entry (2K − 1, 2K − 1), which is ζ2τ2.

Subtracting this entry from E[X̃T
K−1X̃K−1] yields the result.
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The first four rows are identical to E[X̃T
2 X̃2]−1. Our desired result therefore holds for the

basis step. We now turn to the induction step. The induction hypothesis is that the first
four rows of B−1

N are equal to the first four rows of E[X̃T
2 X̃2]−1 extended to have zeros in

columns 7 through 2(N + 1), for some N ≥ 2. We want to establish this result for B−1
N+1.

We have46

BN = E[X̃T
NX̃N ]− CK−1D̂

−1CT
K−1

and thus

B−1
N+1 =

[
B−1
N −B−1

N CND̂
−1

−D̂−1CT
NB

−1
N D̂−1 + D̂−1CT

NB
−1
N CND̂

−1

]
.

Note that CND̂
−1 has zeros up to row 2(N + 1) − 1, so it has zeros in its first four rows.

Applying the induction hypothesis, the first four rows of B−1
N+1 are equal to the first four

rows of E[X̃T
2 X̃2]−1 extended to have zeros in columns 7 through 2(N + 2). As a result, the

first four rows of E[X̃T
KX̃K ]−1 are equal to the first four rows of E[X̃T

2 X̃2]−1 extended to
have zeros in columns 7 through 2(K + 1). We have proved the desired result.

It therefore suffices to analyze K = 1 and K = 2 when deriving coefficients on lags of up
to one period. Note that:

E[X̃T
1 X̃1] = Jζ2


σ2 + τ 2 ρ ρ τ 2

ρ τ 2 0 0
ρ 0 σ2 + τ 2 ρ
τ 2 0 ρ τ 2

0 0 ρ 0
0 0 τ 2 0

 ,

E[X̃T
1 X̃1]−1 =

1

Jζ2


τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2

−ρ
σ2τ2−ρ2

σ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2

0 0 τ2

σ2τ2−ρ2
−ρ

τ2(σ2+τ2)−ρ2
−τ2

σ2τ2−ρ2
ρ

σ2τ2−ρ2
−ρ

τ2(σ2+τ2)−ρ2
τ2(σ2+τ2)2−ρ2(σ2+2τ2)

ρ4+σ2τ4(σ2+τ2)−ρ2(2σ2τ2+τ4)

 ,

E[X̃T
2 X̃2] = Jζ2


σ2 + τ 2 ρ ρ τ 2 0 0

ρ τ 2 0 0 0 0
ρ 0 σ2 + τ 2 ρ ρ τ 2

τ 2 0 ρ τ 2 0 0
0 0 ρ 0 σ2 + τ 2 ρ
0 0 τ 2 0 ρ τ 2

 ,
46The only nonzero entries in the 2K × 2 matrix CK−1D̂

−1 are in row 2K − 1, which is [0 1], and thus
the only nonzero entry in the 2K × 2K matrix CK−1D̂

−1CT
K−1 is entry (2K − 1, 2K − 1), which is ζ2τ2.

Subtracting this entry from E[X̃T
N X̃N ] yields the result.
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and

E[X̃T
2 X̃2]−1 =

1

Jζ2



τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2 0 0

−ρ
σ2τ2−ρ2

σ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2 0 0

0 0 τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2

−τ2
σ2τ2−ρ2

ρ
σ2τ2−ρ2

−ρ
σ2τ2−ρ2

σ2+τ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2

0 0 0 0 τ2

τ2(σ2+τ2)−ρ2
−ρ

τ2(σ2+τ2)−ρ2

0 0 −τ2
σ2τ2−ρ2

ρ
σ2τ2−ρ2

−ρ
τ2(σ2+τ2)−ρ2

−τ2(σ2+τ2)2+ρ2(σ2+2τ2)
(ρ2−σ2τ2)(τ2(σ2+τ2)−ρ2)


.

We also have:

E[X̃T
1 πjt] =J


Cov[wjt − C, πjt]
Cov[fjt − C, πjt]

Cov[wj(t−1) − C, πjt]
Cov[fj(t−1) − C, πjt]

 ,

E[X̃T
2 πjt] =J


Cov[wjt − C, πjt]
Cov[fjt − C, πjt]

Cov[wj(t−1) − C, πjt]
Cov[fj(t−1) − C, πjt]
Cov[wj(t−2) − C, πjt]
Cov[fj(t−2) − C, πjt]

 .

From here, drop the j subscript to save on unnecessary notation. Consider Cov[wt − C, πt].
Expanding π around At = Ā, At−1 = Ā, wt = C, and wt−1 = C, applying either Assump-
tion 1 or 2, and assuming that (At − Ā)2 and (At−1 − Ā)2 are small, we have:

π(At, At−1, wt, wt−1) =π̄ + π̄1(At − Ā) + π̄2(At−1 − Ā) + π̄3(wt − C) + π̄4(wt−1 − C)

+
1

2
π̄33(wt − C)2 + π̄13(At − Ā)(wt − C) + π̄23(At−1 − Ā)(wt − C)

+
1

2
π̄44(wt−1 − C)2 + π̄14(At − Ā)(wt−1 − C) + π̄24(At−1 − Ā)(wt−1 − C)

+ π̄34(wt − C)(wt−1 − C).
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As a result,

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt] + π̄3V ar[wt] + π̄4Cov[wt, wt−1]

+
1

2
π̄33Cov[wt − C, (wt − C)2] +

1

2
π̄44Cov[wt − C, (wt−1 − C)2]

− Cπ̄13Cov[At, wt]− Āπ̄13V ar[wt] + π̄13Cov[wt, Atwt]

− Cπ̄23Cov[At−1, wt]− Āπ̄23V ar[wt] + π̄23Cov[wt, At−1wt]

− Cπ̄14Cov[wt, At]− Āπ̄14Cov[wt, wt−1] + π̄14Cov[wt, Atwt−1]

− Cπ̄24Cov[wt, At−1]− Āπ̄24Cov[wt, wt−1] + π̄24Cov[wt, At−1wt−1]

− Cπ̄34V ar[wt]− Cπ̄34Cov[wt, wt−1] + π̄34Cov[wt, wtwt−1].

If the ε and ν are normally distributed, then Cov[wt−C, (wt−C)2] = 0, or if Assumption 1
holds, then Cov[wt − C, (wt − C)2] ≈ 0. Using results from Bohrnstedt and Goldberger
(1969), we have:

Cov[wt − C, (wt−1 − C)2] =E[(wt − C)(wt−1 − C)2],

which is zero if either the ε and ν are normally distributed or Assumption 1 holds. Again
using results from Bohrnstedt and Goldberger (1969), we also have:

Cov[wt, Atwt] = E[At]V ar[wt] + C Cov[At, wt] + E[(wt − C)2(At − E[At])].

If either the ε and ν are normally distributed or Assumption 1 holds, then this becomes :

Cov[wt, Atwt] = E[At]V ar[wt] + C Cov[At, wt].

Analogous derivations yield:

Cov[wt, At−1wt] =E[At−1]V ar[wt] + C Cov[wt, At−1],

Cov[wt, Atwt−1] =E[At]Cov[wt, wt−1] + C Cov[wt, At],

Cov[wt, At−1wt−1] =E[At−1]Cov[wt, wt−1] + C Cov[wt, At−1]

if either the ε and ν are normally distributed or Assumption 1 holds. Substituting these
results in, we find:

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt] + π̄3V ar[wt] + π̄4Cov[wt, wt−1]

+
(
E[At]− Ā

)
(π̄13V ar[wt] + π̄14Cov[wt, wt−1])

+
(
E[At−1]− Ā

)
(π̄23V ar[wt] + π̄24Cov[wt, wt−1]) .
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The assumption that actions are on average around Ā implies E[At] = Ā and E[At−1] = Ā.
Using that and equation (7), we obtain:

1

ζ2
Cov[wt − C, πt] =(σ2 + τ 2)π̄3 +

π̄13 + βπ̄24 + βπ̄14
π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
(σ2 + τ 2)π̄1 + π̄2ρ+ π̄1

π̄12

χ
ρ

)
+ π̄4ρ+

π̄14

χ
π̄1ρ+

βπ̄23 + β(π̄13 + βπ̄24) π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄1ρ+ π̄2τ

2 + π̄1
π̄12

χ
τ 2

)
.

If Assumption 3 holds, then the Euler equation requires π̄2 = π̄1 = 0. We therefore have:

1

ζ2
Cov[wt − C, πt] =(σ2 + τ 2)π̄3 + π̄4ρ.

Analogous derivations yield:

1

ζ2
Cov[ft − C, πt] =

1

ζ2

(
π̄1Cov[At, ft] + π̄3Cov[wt, ft]

)
=π̄3ρ,

1

ζ2
Cov[wt−1 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−1] + π̄2Cov[At−1, wt−1] + π̄3Cov[wt, wt−1] + π̄4V ar[wt−1]

)
=π̄3ρ+ π̄4(σ2 + τ 2),

1

ζ2
Cov[ft−1 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−1] + π̄2Cov[At−1, ft−1] + π̄3Cov[wt, ft−1] + π̄4Cov[wt−1, ft−1]

)
=π̄3τ

2 + π̄4ρ,

1

ζ2
Cov[wt−2 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−2] + π̄2Cov[At−1, wt−2] + π̄3Cov[wt, wt−2] + π̄4Cov[wt−1, wt−2]

)
=π̄4ρ,

1

ζ2
Cov[ft−2 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−2] + π̄2Cov[At−1, ft−2] + π̄3Cov[wt, ft−2] + π̄4Cov[wt−1, ft−2]

)
=π̄4τ

2.

For either K = 1 or K = 2, simple calculations show that θ̂wt = π̄3, θ̂wt−1 = π̄4, and θ̂ft = 0.
The proposition follows.
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D Proof of Lemma 4

Using equation (7) and standard regression properties, we have:

Γ̂1 =ω
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂2 =ω
π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂3 =ω
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂4 =ω
π̄12

−π̄11 − (1 + β)π̄12 − βπ̄22

,

where

ω ,
−π̄11 − (1 + β)π̄12 − βπ̄22

χ
> 0.

Note that ω > 1 if π̄12 < 0, ω = 1 if π̄12 = 0, and ω < 1 if π̄12 > 0. The lemma follows from
defining

Ω ,
π̄12

−π̄11 − βπ̄22 − βπ̄12λ
.

The sign of Ω matches the sign of π̄12.

E Proof of Proposition 2

The proof of Lemma 4 provides expressions for Γ̂1, Γ̂2, Γ̂3, and Γ̂4. Now consider the parts
of the proposition:

1. Follows directly from the expressions in the proof of Lemma 4.

2. If π̄12 = 0, then ω = 1. The result follows from Lemma 4.

3. If π̄23, π̄14, π̄24 = 0 and π̄13 6= 0, then Γ̂1/[ dĀ/ dC] = ω. The result follows.

4. If π̄13, π̄14, π̄24 = 0 and βπ̄23 6= 0, then Γ̂3/[ dĀ/ dC] = ω. The result follows.

5. If β = 0 and either π̄13 6= 0 or π̄14 6= 0, then [Γ̂1 + Γ̂2]/[ dĀ/ dC] = ω. The result
follows.
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F Proof of Proposition 3

Begin by considering γ̂1. We apply the Frisch-Waugh theorem. The residuals from regressing
wjt on wj(t−1) are:

w̃jt , wjt − C −
ρ

τ 2 + σ2
(wj(t−1) − C) = ζεjt + ζνj(t−1) − ζ

ρ

τ 2 + σ2
[εj(t−1) + νj(t−2)].

We then have:

γ̂1 =
Cov[w̃jt, Ajt]

V ar[w̃jt]

=ω

{
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

ρ+ π̄12
χ

(
τ 2 − ρ2

τ2+σ2

)
σ2 + τ 2 − ρ2

τ2+σ2

− π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄12

χ

ρ2

τ2+σ2

σ2 + τ 2 − ρ2

τ2+σ2

}
.

Now consider γ̂2. The residuals from regressing wj(t−1) on wjt are:

w̃j(t−1) , wj(t−1) − C −
ρ

τ 2 + σ2
(wjt − C) = ζεj(t−1) + ζνj(t−2) − ζ

ρ

τ 2 + σ2
[εjt + νj(t−1)].

We then have:

γ̂2 =ω

{
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄12

χ

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄12
χ

σ2

τ2+σ2ρ− ρ2

τ2+σ2

σ2 + τ 2 − ρ2

τ2+σ2

+
π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

(
1 +

π̄12

χ

ρ

σ2 + τ 2 − ρ2

τ2+σ2

)}
.

Now consider the parts of the proposition:

1. If π̄12 = 0, then

γ̂1 =

π̄13 + βπ̄24 + βπ̄23
ρ

σ2+τ2− ρ2

τ2+σ2

−π̄11 − βπ̄22

.

Because correlation coefficients are bounded above by 1,

ρ ≤ στ ≤ max{σ2, τ 2}
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and

σ2 +τ 2− ρ2

τ 2 + σ2
≥ σ2 +τ 2− τ 2σ2

τ 2 + σ2
= max{σ2, τ 2}+min{σ2, τ 2}

[
1− max{σ2, τ 2}

τ 2 + σ2

]
.

Therefore

ρ

σ2 + τ 2 − ρ2

τ2+σ2

≤ max{σ2, τ 2}

max{σ2, τ 2}+ min{σ2, τ 2}
[
1− max{σ2,τ2}

τ2+σ2

] < 1. (F-3)

The results follow.

2. If π̄12 = 0, then

γ̂2 =

π̄14 − βπ̄23

ρ2

τ2+σ2

σ2+τ2− ρ2

τ2+σ2

−π̄11 − (1 + β)π̄12 − βπ̄22

and

γ̂1 + γ̂2 =

π̄13 + βπ̄24 + π̄14 + βπ̄23

ρ
(

1− ρ

τ2+σ2

)
σ2+τ2− ρ2

τ2+σ2

−π̄11 − (1 + β)π̄12 − βπ̄22

.

From equation (F-3),

γ̂1 + γ̂2 ≤
π̄13 + βπ̄24 + π̄14 + βπ̄23

−π̄11 − (1 + β)π̄12 − βπ̄22

,

with strict inequality if βπ̄23 > 0 and equality if βπ̄23 = 0. Because

1− ρ

τ 2 + σ2
≥ 1− στ

τ 2 + σ2
> 0,

we have

γ̂1 + γ̂2 >
π̄13 + βπ̄24 + π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

if ρβπ̄23 > 0. Finally, note that, for π̄12 = 0,

Γ̂1 + Γ̂2 =
π̄13 + βπ̄24 + π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

.

The results follow.

3. If β = 0, then

γ̂1 =ω

{
π̄13

−π̄11 − π̄12

− π̄14

−π̄11 − π̄12

π̄12

χ

ρ2

τ2+σ2

σ2 + τ 2 − ρ2

τ2+σ2

}
.
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ω > 1 if and only if π̄12 < 0. If π̄12 > 0 then

γ̂1 <
π̄13

−π̄11 − π̄12

≤ dĀ

dC
.

If π̄12 < 0 and π̄14 = 0, then

γ̂1 >
π̄13

−π̄11 − π̄12

=
dĀ

dC
.

We have established the result.

G Proof of Proposition 4

The estimated coefficients are θ̂ = E[X̃T
KX̃K ]−1E[X̃Kπt], where each row of X̃k is[

wjt − C fjt − C wj(t−1) − C fj(t−1) − C ... wj(t−K) − C fj(t−K) − C
]

and the rows correspond to the J observations. Subtracting C demeans each covariate, as
implied by the fixed effects. Following the steps in Lemma 7, it is easy to show that we need
only analyze a case with K = 3 in order to derive the coefficients on each wj(t−n) and fj(t−n)

for n ∈ {0, 1, 2}.
We therefore focus on K = 3 when deriving coefficients on lags of up to two periods.

Note that:

E[X̃T
3 X̃3] = Jζ2



σ2 + τ 2 ρ ρ τ 2 0 0 0 0
ρ τ 2 0 0 0 0 0 0
ρ 0 σ2 + τ 2 ρ ρ τ 2 0 0
τ 2 0 ρ τ 2 0 0 0 0
0 0 ρ 0 σ2 + τ 2 ρ ρ τ 2

0 0 τ 2 0 ρ τ 2 0 0
0 0 0 0 ρ 0 σ2 + τ 2 ρ
0 0 0 0 τ 2 0 ρ τ 2
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and

E[X̃T
3 X̃3]−1

=
1

Jζ2



τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2 0 0 0 0

−ρ
σ2τ2−ρ2

σ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2 0 0 0 0

0 0 τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2 0 0

−τ2
σ2τ2−ρ2

ρ
σ2τ2−ρ2

−ρ
σ2τ2−ρ2

σ2+τ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2 0 0

0 0 0 0 τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2

0 0 −τ2
σ2τ2−ρ2

ρ
σ2τ2−ρ2

−ρ
σ2τ2−ρ2

σ2+τ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2

0 0 0 0 0 0 τ2

τ2(σ2+τ2)−ρ2
−ρ

τ2(σ2+τ2)−ρ2

0 0 0 0 −τ2
σ2τ2−ρ2

ρ
σ2τ2−ρ2

−ρ
τ2(σ2+τ2)−ρ2

τ2(σ2+τ2)2−ρ2(σ2+2τ2)
ρ4+σ2τ4(σ2+τ2)−ρ2τ2(2σ2+τ2)


.

We also have:

E[X̃T
3 πjt] =J



Cov[wjt − C, πjt]
Cov[fjt − C, πjt]

Cov[wj(t−1) − C, πjt]
Cov[fj(t−1) − C, πjt]
Cov[wj(t−2) − C, πjt]
Cov[fj(t−2) − C, πjt]
Cov[wj(t−3) − C, πjt]
Cov[fj(t−3) − C, πjt]


.

From here, drop the j subscript to save on unnecessary notation. Following the proof of
Proposition 1, we have:

1

ζ2
Cov[wt − C, πt] =(σ2 + τ 2)π̄3 +

π̄13 + βπ̄24 + βπ̄14
π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
(σ2 + τ 2)π̄1 + π̄2ρ+ π̄1

π̄12

χ
ρ

)
+ π̄4ρ+

π̄14

χ
π̄1ρ+

βπ̄23 + β(π̄13 + βπ̄24) π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄1ρ+ π̄2τ

2 + π̄1
π̄12

χ
τ 2

)
.

Analogous derivations yield:

1

ζ2
Cov[ft − C, πt] =

1

ζ2

(
π̄1Cov[At, ft] + π̄3Cov[wt, ft]

)
=π̄3ρ+

π̄13 + βπ̄24 + βπ̄14
π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
π̄1ρ

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
π̄1τ

2,
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1

ζ2
Cov[wt−1 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−1] + π̄2Cov[At−1, wt−1] + π̄3Cov[wt, wt−1] + π̄4V ar[wt−1]

)
=π̄3ρ+ π̄4(σ2 + τ 2) + π̄1

π̄14

χ
(σ2 + τ 2) +

(
π̄2 + π̄1

π̄12

χ

)
π̄14

χ
ρ

+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

[
π̄1ρ+

(
π̄2 + π̄1

π̄12

χ

)(
σ2 + τ 2 +

π̄12

χ
ρ

)]
+

(
π̄2 + π̄1

π̄12

χ

)(
ρ+

π̄12

χ
τ 2

)
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
,

1

ζ2
Cov[ft−1 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−1] + π̄2Cov[At−1, ft−1] + π̄3Cov[wt, ft−1] + π̄4Cov[wt−1, ft−1]

)
=π̄3τ

2 + π̄4ρ+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄1τ

2 + π̄2ρ+ π̄1
π̄12

χ
ρ

)
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2τ

2 + π̄1
π̄12

χ
τ 2

)
+ π̄1

π̄14

χ
ρ,

1

ζ2
Cov[wt−2 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−2] + π̄2Cov[At−1, wt−2] + π̄3Cov[wt, wt−2] + π̄4Cov[wt−1, wt−2]

)
=π̄4ρ+ π̄1

π̄14

χ
ρ+

π̄14

χ

(
π̄2 + π̄1

π̄12

χ

)[
(σ2 + τ 2) + ρ

π̄12

χ

]
+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)[
ρ+

π̄12

χ
(σ2 + τ 2) +

(
π̄12

χ

)2

ρ

]
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

π̄12

χ

(
π̄2 + π̄1

π̄12

χ

)[
ρ+

π̄12

χ
τ 2

]
,

1

ζ2
Cov[ft−2 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−2] + π̄2Cov[At−1, ft−2] + π̄3Cov[wt, ft−2] + π̄4Cov[wt−1, ft−2]

)
=π̄4τ

2 + π̄1
π̄14

χ
τ 2 +

π̄14

χ

(
π̄2 + π̄1

π̄12

χ

)
ρ

+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)[
τ 2 +

π̄12

χ
ρ

]
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ
τ 2,
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1

ζ2
Cov[wt−3 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−3] + π̄2Cov[At−1, wt−3] + π̄3Cov[wt, wt−3] + π̄4Cov[wt−1, wt−3]

)
=
π̄14

χ

(
π̄2 + π̄1

π̄12

χ

){
ρ+

π̄12

χ

[
(σ2 + τ 2) + ρ

π̄12

χ

]}
+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ[
ρ+

π̄12

χ
(σ2 + τ 2) +

(
π̄12

χ

)2

ρ

]
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄12

χ

)2(
π̄2 + π̄1

π̄12

χ

)[
ρ+

π̄12

χ
τ 2

]
,

1

ζ2
Cov[ft−3 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−3] + π̄2Cov[At−1, ft−3] + π̄3Cov[wt, ft−3] + π̄4Cov[wt−1, ft−3]

)
=
π̄14

χ

(
π̄2 + π̄1

π̄12

χ

){
τ 2 +

π̄12

χ
ρ

}
+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ

[
τ 2 +

π̄12

χ
ρ

]
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)(
π̄12

χ

)2

τ 2.

Now consider the regression coefficients, from E[X̃T
3 X̃3]−1E[X̃T

3 πt]. The coefficient on
wjt is:

θ̂wt =
1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt − C, πt] +

−ρ
σ2τ 2 − ρ2

Cov[ft − C, πt] +
−τ 2

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]

)
=π̄3 + Γ̂1π̄1.

The coefficient on fjt is:

θ̂ft =
1

ζ2

(
−ρ

σ2τ 2 − ρ2
Cov[wt − C, πt] +

σ2

σ2τ 2 − ρ2
Cov[ft − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]

)
=Γ̂3π̄1.

The coefficient on wj(t−1) is:

θ̂wt−1 =
1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt−1 − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]−

τ 2

σ2τ 2 − ρ2
Cov[ft−2 − C, πt]

)
=π̄4 + Γ̂1

(
1− β π̄12

χ

)
π̄2 + Γ̂2π̄1.
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The coefficient on fj(t−1) is:

θ̂ft−1 =
1

ζ2

(
− τ 2

σ2τ 2 − ρ2
Cov[wt − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[wt−1 − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft − C, πt]

+
σ2 + τ 2

σ2τ 2 − ρ2
Cov[ft−1 − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft−2 − C, πt]

)
=Γ̂3

(
1− β π̄12

χ

)
π̄2.

And the coefficient on wj(t−2) is:

θ̂wt−2 =
1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt−2 − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[ft−2 − C, πt]−

τ 2

σ2τ 2 − ρ2
Cov[ft−3 − C, πt]

)
=Γ̂1

(
1− β π̄12

χ

)
π̄12

χ
π̄2 + Γ̂2

(
1− β π̄12

χ

)
π̄2.

We now prove the parts of the proposition.

1. Directly follows from the foregoing.

2. By Proposition 2, π̄12 = 0 implies dĀ/ dC = Γ̂1 + Γ̂2 + Γ̂3. The result follows from the
foregoing and equation (4).

3. Under the given assumptions, we have:

θ̂wt + θ̂wt−1 =π̄3 + π̄4 + Γ̂1π̄1 + Γ̂1

(
1− β π̄12

χ

)
π̄2,

so

θ̂wt + θ̂wt−1 ≤π̄3 + π̄4 + Γ̂1π̄1 + Γ̂1π̄2 ⇔ π̄2π̄12 > 0.

Using Proposition 2 and equations (2) and (4),

dE0[πt]

dC
>π̄3 + π̄4 + Γ̂1π̄1 + Γ̂1π̄2 ⇔ π̄2π̄12 > 0,

using π̄13 > 0. Therefore

θ̂wt + θ̂wt−1 <
dE0[πt]

dC
⇔ π̄2π̄12 > 0.

We have established the result.
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4. Under the given assumptions, we have:

θ̂wt + θ̂wt−1 + θ̂ft + θ̂ft−1 =π̄3 + π̄4 + Γ̂3π̄1 + Γ̂3

(
1− β π̄12

χ

)
π̄2,

so

θ̂wt + θ̂wt−1 + θ̂ft + θ̂ft−1 <π̄3 + π̄4 + Γ̂3π̄1 + Γ̂3π̄2 ⇔ π̄2π̄12 > 0,

using βπ̄23 > 0. Using Proposition 2 and equations (2) and (4),

dE0[πt]

dC
>π̄3 + π̄4 + Γ̂3π̄1 + Γ̂3π̄2 ⇔ π̄2π̄12 > 0,

using βπ̄23 > 0. Therefore

θ̂wt + θ̂wt−1 + θ̂ft + θ̂ft−1 <
dE0[πt]

dC
⇔ π̄2π̄12 > 0.

We have established the result.

5. It is clear that β = 0 implies θ̂ft = 0 and θ̂ft−1 = 0. Further, the Euler equation implies
π̄1 = 0. We then have:

θ̂wt =π̄3,

θ̂wt−1 =π̄4 + Γ̂1π̄2,

θ̂wt−2 =Γ̂2π̄2 + Γ̂1
π̄12

−π̄11

π̄2.

Therefore:

θ̂wt + θ̂wt−1 + θ̂wt−2 =π̄3 + π̄4 + Γ̂1

(
1 +

π̄12

−π̄11

)
π̄2 + Γ̂2π̄2.

We then have:

θ̂wt + θ̂wt−1 + θ̂wt−2 ≤π̄3 + π̄4 + Γ̂1π̄2 + Γ̂2π̄2 ⇔ π̄2π̄12 > 0.

Using Proposition 2 and equations (2) and (4),

dE0[πt]

dC
>π̄3 + π̄4 + Γ̂1π̄2 + Γ̂2π̄2 ⇔ π̄2π̄12 > 0,

using either π̄13 > 0 or π̄14 > 0. Therefore

θ̂wt + θ̂wt−1 + θ̂wt−2 <
dE0[πt]

dC
⇔ π̄2π̄12 > 0.

We have established the result.
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H Proof of Corollary 5

We follow the proof of Proposition 2 but now do not impose the assumption that E[At] = Ā
and E[At−1] = Ā. We now have:

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
V ar[wt]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
Cov[wt, wt−1],

Cov[ft − C, πt] =π̄1Cov[At, ft] +

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, ft],

Cov[wt−1 − C, πt] =π̄1Cov[At, wt−1] + π̄2Cov[At−1, wt−1]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, wt−1]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
V ar[wt−1],

Cov[ft−1 − C, πt] =π̄1Cov[At, ft−1] + π̄2Cov[At−1, ft−1]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, ft−1]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
Cov[wt−1, ft−1],

and so on. Following that analysis, we obtain the regression coefficients:

θ̂wt =π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā) + ω
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄1,

θ̂wt−1 =π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

+ ω
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

(
1− β π̄12

χ

)
π̄2 + ω

π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄1.

The other coefficients are unchanged. Under the assumption that at least one of π̄13, π̄14, π̄23, π̄24

is strictly positive, we have increased θ̂wt and θ̂wt−1 if average actions are above Ā and have

decreased θ̂wt and θ̂wt−1 if average actions are below Ā. The results follow.
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I Proof of Proposition 6

We derive estimators in the case of K = 0, K = 1, and K = 2. The superscript on the
estimators will indicate K.

Begin with K = 0. Demeaned to account for fixed effects, each row of the matrix X̃
of covariates is now simply wjt − C, with the rows corresponding to the J observations.
Therefore

E[X̃T X̃] = Jζ2(σ2 + τ 2)

and

E[X̃T X̃]−1 =
1

Jζ2(σ2 + τ 2)
.

We also have:

E[X̃Tπjt] =J Cov[wjt − C, πjt].

We analyzed this covariance in the proof of Proposition 4 under the same assumptions. Using
those results, we find that

Φ̂0
wt =π̄3 + π̄4

ρ

σ2 + τ 2
+ Γ̂1

[
π̄1 +

(
1− β π̄12

χ

)
ρ

σ2 + τ 2
π̄2

]
+ Γ̂2π̄1

ρ

σ2 + τ 2
+ Γ̂3

[
π̄1

ρ

σ2 + τ 2
+

(
1− β π̄12

χ

)
τ 2

σ2 + τ 2
π̄2

]
.

Now consider K = 1. Demeaned to account for fixed effects, each row of the matrix X̃
of covariates is [

wjt − C wj(t−1) − C
]
,

with the rows corresponding to the J observations. Thus,

E[X̃T X̃] = Jζ2

[
σ2 + τ 2 ρ

ρ σ2 + τ 2

]
and

E[X̃T X̃]−1 =
1

Jζ2[(σ2 + τ 2)2 − ρ2]

[
σ2 + τ 2 −ρ
−ρ σ2 + τ 2

]
.

We also have:

E[X̃Tπjt] =J

[
Cov[wjt − C, πjt]

Cov[wj(t−1) − C, πjt]

]
.
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We analyzed these covariances in the proof of Proposition 4 under the same assumptions.
Using those results, we find that

Φ̂1
wt =π̄3 + Γ̂1

{
π̄1 −

ρ2

(σ2 + τ 2)2 − ρ2

π̄12

χ

(
1− β π̄12

χ

)
π̄2

}
− Γ̂2

ρ2

(σ2 + τ 2)2 − ρ2

(
1− β π̄12

χ

)
π̄2

+ Γ̂3

{
ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2
π̄1 +

(
τ 2(σ2 + τ 2)− ρ2

(σ2 + τ 2)2 − ρ2
− ρτ 2

(σ2 + τ 2)2 − ρ2

π̄12

χ

)(
1− β π̄12

χ

)
π̄2

}
,

Φ̂1
wt−1

=π̄4 + Γ̂1

(
1 +

ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

π̄12

χ

)(
1− β π̄12

χ

)
π̄2 + Γ̂2

[
π̄1 +

ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

(
1− β π̄12

χ

)
π̄2

]
+ Γ̂3

{
−ρ2

(σ2 + τ 2)2 − ρ2
π̄1 +

(
ρσ2

(σ2 + τ 2)2 − ρ2
+

τ 2(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

π̄12

χ

)(
1− β π̄12

χ

)
π̄2

}
.

Finally, consider K = 2. Demeaned to account for fixed effects, each row of the matrix
X̃ of covariates is [

wjt − C wj(t−1) − C wj(t−2) − C
]
,

with the rows corresponding to the J observations. Thus,

E[X̃T X̃] = Jζ2

σ2 + τ 2 ρ 0
ρ σ2 + τ 2 ρ
0 ρ σ2 + τ 2


and

E[X̃T X̃]−1 =
1

Jζ2[(σ2 + τ 2)2 − 2ρ2]

σ2 + τ 2 − ρ2

σ2+τ2
−ρ ρ2

σ2+τ2

−ρ σ2 + τ 2 −ρ
ρ2

σ2+τ2
−ρ σ2 + τ 2 − ρ2

σ2+τ2

 .
We also have:

E[X̃Tπjt] =J

 Cov[wjt − C, πjt]
Cov[wj(t−1) − C, πjt]
Cov[wj(t−2) − C, πjt]

 .
We analyzed these covariances in the proof of Proposition 4 under the same assumptions.
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Using those results, we find that

Φ̂2
wt =π̄3 + Γ̂1

{
π̄1 +

ρ

σ2 + τ 2

ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄12

χ

)2(
π̄2 + π̄1

π̄12

χ

)}
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2

{(
σ2 + τ 2 − ρ2

σ2 + τ 2

)(
π̄1ρ+ π̄2τ

2 + π̄1
π̄12

χ
τ 2

)
+

(
ρ2

σ2 + τ 2

π̄12

χ
− ρ
)(

π̄2 + π̄1
π̄12

χ

)(
ρ+

π̄12

χ
τ 2

)}
+ Γ̂2

ρ2

(σ2 + τ 2)2 − 2ρ2

ρ

σ2 + τ 2

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ
,

Φ̂2
wt−1

=π̄4 + Γ̂1

{
1− ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄12

χ

)2}(
π̄2 + π̄1

π̄12

χ

)
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2

{
− ρ2π̄1 + σ2

(
π̄2 + π̄1

π̄12

χ

)
ρ+ [τ 2(σ2 + τ 2)− ρ2]

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ

− ρτ 2

(
π̄12

χ

)2(
π̄2 + π̄1

π̄12

χ

)}
+ Γ̂2

{
π̄1 −

ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ

}
,

Φ̂2
wt−2

=Γ̂1

{(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ
+

ρ (σ2 + τ 2)

(σ2 + τ 2)2 − 2ρ2

(
π̄2 + π̄1

π̄12

χ

)(
π̄12

χ

)2}
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2{
ρ2

σ2 + τ 2
π̄1ρ−

(
π̄2 + π̄1

π̄12

χ

)
σ2ρ2

σ2 + τ 2
+ ρ

(
σ2 − ρ2

σ2 + τ 2

)
π̄12

χ

(
π̄2 + π̄1

π̄12

χ

)
+ τ 2

(
σ2 + τ 2 − ρ2

σ2 + τ 2

)(
π̄12

χ

)2(
π̄2 + π̄1

π̄12

χ

)}
+ Γ̂2

{
1 +

(σ2 + τ 2)2 − ρ2

(σ2 + τ 2)2 − 2ρ2

ρ

σ2 + τ 2

π̄12

χ

}(
π̄2 + π̄1

π̄12

χ

)
.

We now prove the parts of the proposition:

1. If Assumption 3 holds, then the Euler equation requires π̄2 = π̄1 = 0. The result
follows by inspection and by recognizing that ρ ≤ στ (because correlation coefficients
are bounded above by 1).
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2. If π̄12 = 0, then

Φ̂0
wt =π̄3 + π̄4

ρ

σ2 + τ 2
+ Γ̂1

[
π̄1 +

ρ

σ2 + τ 2
π̄2

]
+ Γ̂2π̄1

ρ

σ2 + τ 2
+ Γ̂3

[
π̄1

ρ

σ2 + τ 2
+

τ 2

σ2 + τ 2
π̄2

]
,

Φ̂1
wt =π̄3 + Γ̂1π̄1 − Γ̂2

ρ2

(σ2 + τ 2)2 − ρ2
π̄2 + Γ̂3

{
ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2
π̄1 +

τ 2(σ2 + τ 2)− ρ2

(σ2 + τ 2)2 − ρ2
π̄2

}
,

Φ̂1
wt−1

=π̄4 + Γ̂1π̄2 + Γ̂2

[
π̄1 +

ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2
π̄2

]
+ Γ̂3

{
−ρ2

(σ2 + τ 2)2 − ρ2
π̄1 +

ρσ2

(σ2 + τ 2)2 − ρ2
π̄2

}
,

Φ̂2
wt =π̄3 + Γ̂1π̄1 + Γ̂3

1

(σ2 + τ 2)2 − 2ρ2

{
(σ2 + τ 2)2 − ρ2

σ2 + τ 2

(
π̄1ρ+ π̄2τ

2
)
− ρ2π̄2

}
,

Φ̂2
wt−1

=π̄4 + Γ̂1π̄2 + Γ̂2π̄1 + Γ̂3
ρ

(σ2 + τ 2)2 − 2ρ2

{
− ρπ̄1 + σ2π̄2

}
,

Φ̂2
wt−2

=Γ̂2π̄2 + Γ̂3
ρ

σ2 + τ 2

ρ

(σ2 + τ 2)2 − 2ρ2

{
π̄1ρ− π̄2σ

2

}
.

By Proposition 2, π̄12 = 0 implies dĀ/ dC = Γ̂1 + Γ̂2 + Γ̂3. If, in addition, βπ̄23 = 0,
then Γ̂3 = 0. Result (a) follows from equation (4). π̄14 = 0 implies Γ̂2 = 0. Result (b)
follows from equation (4).

If π̄12 = 0, βπ̄23 = 0, and π̄4 = 0, then

Φ̂0
wt =π̄3 + Γ̂1

[
π̄1 +

ρ

σ2 + τ 2
π̄2

]
and

dE0[πt]

dC
=π̄3 + Γ̂1 [π̄1 + π̄2] .

We then have:

dE0[πt]

dC
> Φ̂0

wt ⇔ Γ̂1π̄2 > Γ̂1
ρ

σ2 + τ 2
π̄2.
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If π̄13 > 0, then Γ̂1 > 0 and

dE0[πt]

dC
> Φ̂0

wt ⇔ π̄2 >
ρ

σ2 + τ 2
π̄2.

Because correlation coefficients are bounded above by 1, ρ ≤ στ . Therefore

π̄2 >
ρ

σ2 + τ 2
π̄2 ⇔ π̄2 > 0.

We have established result (c).

J Proof of Proposition 7

Observe that

Λ̂ =
Cov[π̃jt, w̃jt]

V ar[w̃jt]
.

If either Assumption 3 holds or π̄12, ρ = 0, then Cov[πt, wt−k] = 0 for k > 2. We then have:

Cov[π̃jt, w̃jt] =
1

∆2

{ t+∆−2∑
T=t+2

(
Cov[πjT , wjT ] + Cov[πjT , wj(T−1)] + Cov[πjT , wj(T−2)] + Cov[πjT , fjT ]

)
+ Cov[πj(t+1), wj(t+1)] + Cov[πj(t+1), wjt] + Cov[πj(t+1), fj(t+1)]

+ Cov[πjt, wjt] + Cov[πjt, fjt]

+ Cov[πj(t+∆−1), wj(t+∆−1)] + Cov[πj(t+∆−1), wj(t+∆−2)] + Cov[πj(t+∆−1), wj(t+∆−3)]

}
for ∆ > 2.

Begin by considering the case in which Assumption 3 holds. The Euler equation requires
π̄2 = π̄1 = 0. Using intermediate results in the proof of Proposition 4, we have:

1

ζ2
Cov[wjt, πjt] =(σ2 + τ 2)π̄3 + ρπ̄4,

1

ζ2
Cov[fjt, πjt] =ρπ̄3,

1

ζ2
Cov[wj(t−1), πjt] =ρπ̄3 + π̄4(σ2 + τ 2),

1

ζ2
Cov[wj(t−2), πjt] =ρπ̄4.
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We then have:

Cov[π̃jt, w̃jt] =
1

∆2

{
∆[σ2 + τ 2 + 2ρ][π̄3 + π̄4]− 2ρπ̄3 − [σ2 + τ 2 + 2ρ]π̄4

}
=

1

∆2

{
[σ2 + τ 2][∆π̄3 + (∆− 1)π̄4] + 2ρ[∆− 1][π̄3 + π̄4]

}
.

Note that

V ar(w̃jt) =
∆(σ2 + τ 2) + 2ρ(∆− 1)

∆2
.

The estimator is then:

Λ̂ =
[σ2 + τ 2][∆π̄3 + (∆− 1)π̄4] + 2ρ[∆− 1][π̄3 + π̄4]

∆(σ2 + τ 2) + 2ρ(∆− 1)

=π̄3 + π̄4
∆− 1

∆

σ2 + τ 2 + 2ρ

σ2 + τ 2 + 2ρ∆−1
∆︸ ︷︷ ︸

,Υ1

.

As ∆→∞,

Λ̂→π̄3 + π̄4,

which is also the marginal effect of climate when Assumption 3 holds.
Now consider the case in which Assumption 3 need not hold but π̄12 = 0 and ρ = 0.

Using intermediate results in the proof of Proposition 4, we have:

1

ζ2
Cov[wjt, πjt] =(σ2 + τ 2)π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

(σ2 + τ 2)π̄1 +
βπ̄23

−π̄11 − βπ̄22

π̄2τ
2,

1

ζ2
Cov[fjt, πjt] =

βπ̄23

−π̄11 − βπ̄22

π̄1τ
2,

1

ζ2
Cov[wj(t−1), πjt] =π̄4(σ2 + τ 2) + π̄1

π̄14

−π̄11 − βπ̄22

(σ2 + τ 2) +
π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2

(
σ2 + τ 2

)
,

1

ζ2
Cov[wj(t−2), πjt] =π̄2

π̄14

−π̄11 − βπ̄22

(σ2 + τ 2).

Summing these, we have:

Cov[wjt, πjt] + Cov[fjt, πjt] + Cov[wj(t−1), πjt] + Cov[wj(t−2), πjt]

=(σ2 + τ 2)

{
π̄3 + π̄4 +

π̄13 + βπ̄24 + π̄14

−π̄11 − βπ̄22

[π̄1 + π̄2] +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
,
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Cov[wj(t+1), πj(t+1)] + Cov[fj(t+1), πj(t+1)] + Cov[wjt, πj(t+1)]

=(σ2 + τ 2)

{
π̄3 + π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

[π̄1 + π̄2] + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
,

Cov[wjt, πjt] + Cov[fjt, πjt] =(σ2 + τ 2)

{
π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄1 +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
,

Cov[wj(t+∆−1), πj(t+∆−1)] + Cov[wj(t+∆−2), πj(t+∆−1)] + Cov[wj(t+∆−3), πj(t+∆−1)]

=(σ2 + τ 2)

{
π̄3 + π̄4 +

π̄13 + βπ̄24 + π̄14

−π̄11 − βπ̄22

[π̄1 + π̄2] +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄2

}
.

Note that

V ar(w̃jt) =
σ2 + τ 2

∆
.

The estimator is then:

Λ̂ =π̄3 +
π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄1 +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄2

+
∆− 1

∆

{
π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2 + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄1

}
+

∆− 2

∆
π̄2

π̄14

−π̄11 − βπ̄22

=Φ̂0
wt +

∆− 1

∆

{
π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2 + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄1

}
︸ ︷︷ ︸

,Υ1

+
∆− 2

∆
π̄2

π̄14

−π̄11 − βπ̄22︸ ︷︷ ︸
,Υ2

.

As ∆→∞,

Λ̂→π̄3 + π̄4 +
π̄13 + βπ̄24 + π̄14

−π̄11 − βπ̄22

[π̄1 + π̄2] +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

=π̄3 + π̄4 + [π̄1 + π̄2]

[
Γ̂1 + Γ̂2 +

τ 2

σ2 + τ 2
Γ̂3

]
.

The results follow from inspection and previous results on the marginal effect of climate.
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